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This work theoretically examines the flow and heat transfer characteristics due to an exponen-
tially stretching sheet in a Powell–Eyring fluid. Governing partial differential equations are non-
dimensionalized and transformed into non-similar forms. Explicit analytic expressions of velocity
and temperature functions are developed by homotopy analysis method (HAM). The Numerical so-
lutions are obtained by using shooting method with fourth-order Runge–Kutta integration technique.
The fields are influence appreciably with the variation of embedding parameters. We noticed that
the velocity ratio has a dual behaviour on the momentum boundary layer. On the other hand the
thermal boundary layer thins when the velocity ratio is increased. The results indicate a significant
increase in the velocity and a decrease in thermal boundary layer thickness with an intensification in
the viscoelastic effects.
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1. Introduction

Recent advancements in technological and engi-
neering applications have brought a wide range of
non-Newtonian fluids that are characterized by diverse
significant deviations from the viscous fluids. Exam-
ples of such fluids include coal water or coal-oil slur-
ries, food products, inks, glues, soaps, shampoos, cer-
tain paints, polymer solutions etc. In these fluids, the
relationship between the shear stress and flow field
is very complicated. The viscoelastic properties add
more complexities in the resulting nonlinear equations.
Several researchers are presently engaged in the flow
analysis of non-Newtonain fluids. The Powell–Eyring
fluid model is mathematically complex but it has cer-
tain advantages over other non-Newtonian fluid mod-
els. Firstly, it is deduced from kinetic theory of liq-
uid rather than the empirical relation and, secondly,
it correctly reduces to Newtonian behaviour for low
and high shear rates. It has been seen that the Powell–
Eyring fluid model is better to formulate the flows of

modern industrial materials such as powdered graphite
and ethylene glycol. The analysis of a Powell–Eyring
fluid flow has been scarcely discussed in the literature
despite of the complexities associated with the explicit
expressions of stress components and velocity. Influ-
ence of couple stresses on the flow of a Powell–Eyring
fluid between parallel plates was investigated by Eld-
abe et al. [1]. Zueco and Beg [2] numerically inves-
tigated the pulsatile flow of a Powell–Eyring fluid by
an explicit finite difference scheme. Homotopy per-
turbation analysis of slider bearing lubricated with
a Powell–Eyring fluid is presented by Islam et al. [3].
Patel and Timol [4] numerically examined the flow
of a Powell–Eyring model past a wedge by using the
method of satisfaction of asymptotic boundary condi-
tions. Analytic solutions for flow of a Powell–Eyring
fluid over a continuously moving surface with con-
vective boundary conditions are computed by Hayat
et al. [5].

The study of flow and heat transfer due to exten-
sible surfaces has obvious importance in industry and
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engineering. In fact various technical processes related
to polymers involve the production of sheeting ma-
terial which includes both metal and polymer sheets.
The quality of the final product depends on the heat
transfer rate at the stretching surface. The pioneering
work on the two-dimensional flow over a flat moving
surface was reported by Sakiadis [6]. Crane [7] ex-
tended this idea for a stretching sheet and provided
an exact solution of the arising differential system.
The researchers have looked at Crane’s problem un-
der various aspects (see Rajagopal et al. [8], Mahapa-
tra and Gupta [9], Cortell [10], Bachok et al. [11], Ab-
basbandy and Ghehsareh [12], Fang et al. [13], Hayat
et al. [14], Mustafa et al. [15, 16], Bhattacharyya and
Layek [17] etc.). However the flow analysis over an ex-
ponentially stretching sheet is sparsely studied. Mag-
yari and Keller [18] discussed the heat and mass trans-
fer effects on the flow of a viscous fluid over an expo-
nentially stretching sheet. The characteristics of suc-
tion and heating scheme on an exponentially stretched
flow have been analyzed by Elbashbeshy [19]. The
boundary layer flow of a viscoelastic fluid over an ex-
ponentially stretching sheet is addressed by Khan and
Sanjayanand [20]. The effect of thermal radiation on
the flow due to an exponentially stretching surface
in a viscous fluid has been examined by Sajid and
Hayat [21]. Boundary layer flow and heat transfer of
a second-grade fluid over an exponentially stretching
sheet are investigated by Nadeem et al. [22].

To the best of our knowledge, there is not a sin-
gle article in the literature that addresses the flow of
a Powell–Eyring fluid due to an exponentially stretch-
ing surface. Therefore we present a mathematical
model for stagnation-point flow and heat transfer due
to an exponentially stretching sheet in a Powell–Eyring
fluid. Such analysis in absence of stagnation point and
heat transfer has not been yet reported. The equations
are first modelled and then solved numerically using
the shooting method with Runge–Kutta algorithm. It
is quite obvious that numerical solutions can only be
obtained for discrete set of points. Therefore it is oc-
casionally time consuming to get a complete curve of
results. On the other hand the analytic solutions, avail-
able in the complete domain of interest and having
a reasonable amount of accuracy, are always handy
for scientists and engineers. The present problem is
therefore also solved analytically in the whole spatial
domain (0 ≤ η < ∞) by using an efficient analytical
tool namely the homotopy analysis method (HAM).

The analytic solutions are found in excellent agreement
with the numerical solutions for all the values of em-
bedded parameters. The accuracy of HAM has already
been verified for various nonlinear problems in science
and engineering [23 – 35]. Latest advances in homo-
topy analysis method can be sought from Liao [36].
Interpretation to the physical parameters is assigned
through graphical and numerical results. The dimen-
sionless expressions of skin friction coefficient and lo-
cal Nusselt number are evaluated and discussed.

2. Formulation of the Problem

We consider the incompressible flow of a Powell–
Eyring fluid over an exponentially stretching sheet.
The x- and y-axis are taken along and perpendicu-
lar to the sheet and the flow is confined to y ≥ 0.
Let Uw(x) = aexp(x/l) denote the velocity of the
sheet while the velocity of external flow is U∞(x) =
bexp(x/l). In view of polymer extrusion, the mate-
rial properties and in particular the elasticity of the ex-
truded sheet is being pulled out by a constant force.
Let Tw(x) = T∞ + cexp(x/2l) denote the temperature
of the surface where T∞ is the ambient temperature.
In the absence of heat generation and viscous dissipa-
tion, the steady boundary layer equations for flow and
heat transfer in a Powell–Eyring fluid are (see Patel and
Timol [4] and Hayat et al. [5])

∂u
∂x

+
∂v
∂y

= 0 , (1)

u
∂u
∂x

+ v
∂u
∂y

= U∞

dU∞

dx
+
(

ν +
1

ρβC

)
∂ 2u
∂y2

− 1
2ρβC3

(
∂u
∂y

)2
∂ 2u
∂y2 ,

(2)

u
∂T
∂x

+ v
∂T
∂y

=
k

ρCp

∂ 2T
∂y2 , (3)

where ν is the kinematic viscosity, ρ is the fluid den-
sity, u and v are the velocity components in x- and y-
directions, respectively, β and C are the material fluid
parameters, Cp is the specific heat at constant pressure,
T is the fluid’s temperature and k is the thermal con-
ductivity.

The relevant boundary conditions are

u = Uw(x) = aexp(x/l) , v = 0 ,

T = Tw(x) = T∞ + cexp(x/2l) at y = 0 ,

u→U∞(x) = bexp(x/l) , T → T∞ as y→ ∞ .

(4)
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Inserting the following similarity transformations

η =
√

a
2νL

ex/2Ly , u = aex/L f ′(η) ,

v =−
√

νa
2L

ex/2L [ f (η)+η f ′(η)
]
,

θ(η) =
T −T∞

Tw−T∞

(5)

into (2) – (4), we have

(1+K) f ′′′+ f f ′′−2 f ′2−KΓ f ′′2 f ′′′+2λ
2 = 0 , (6)

θ
′′+Pr

(
f θ
′−θ f ′

)
= 0 , (7)

f (0) = 0, f ′(0) = 1, θ(0) = 1 ,

f ′(∞)→ λ , θ(∞)→ 0 . (8)

In the above equations, λ is the velocity ratio, K and
Γ are the dimensionless fluid parameters, and Pr is the
Prandtl number. These are defined as

λ =
b
a

, K =
1

µβC
, Γ =

U3
w

4νLC2 , Pr =
µCp

k
. (9)

In is worth mentioning here that the governing dif-
ferential system does not exhibit a self-similar solution
since Γ is a function of x. Therefore we look for lo-
cal similarity solution of (6) – (8) which permits us to
investigate the behaviour of parameters at a fixed lo-
cation above the sheet. Further when K = 0, equations
of motion for the viscous (Newtonian) fluid case are
recovered. The physical quantities of interest here are
the skin friction coefficient Cf and local Nusselt num-
ber Nu defined as

Cf =
τw

ρU2
w

, Nu =
xqw

(Tw−T∞)
, (10)

where τw is the wall shear stress and qw is the surface
heat flux given by

τw =
(

µ +
1

βC

)
∂u
∂y

∣∣∣∣
y=0
− 1

6βC3

(
∂u
∂y

)3
∣∣∣∣∣
y=0

,

qw =−k

(
∂T
∂y

)∣∣∣∣
y=0

, (11)

√
2ReCf = (1+K) f ′′(0)− KΓ

3

(
f ′′(0)

)3
,√

2L
x

Nu/Re1/2
x =−θ

′(0) , (12)

where Re = UwL/ν and Rex = Uwx/ν are the local
Reynolds numbers.

3. Numerical Method

Equations (6) and (7) subject to the boundary condi-
tions (8) have been solved numerically using the shoot-
ing method using fourth-order Runge–Kutta integra-
tion technique. However it is required to transform the
original differential equations into a system of first-
order ordinary differential equations as

d f
dη

= F ,

dF
dη

= G ,

dG
dη

=
2F2− f G−2λ 2

1+K−KΓ G2 ,

(13)

dθ

dη
= P ,

dP
dη

=−Pr( f P−θF)
(14)

with the boundary conditions

f (0) = 0 , F(0) = 1 , F(∞) = λ ,

θ(0) = 1 , θ(∞) = 0 .
(15)

In order to integrate (13) and (14) as an initial value
problem, we require a value for G(0), i.e. f ′′(0), and
P(0), i.e. θ ′(0), but no such values are given in the
boundary. The suitable values for f ′′(0) and θ ′(0) are
chosen and then integration is carried out. We com-
pare the calculated values for f ′ and θ at η = 10 (say)
with the given boundary condition f ′(10) = a/c and
θ(10) = 0 and adjust the estimated values, f ′′(0) and
θ ′(0), to get a better approximation for the solution.
Different values of η (such as η = 10,11,12,13 etc.)
are taken in our numerical computations so that numer-
ical values are independent of η chosen.

4. Homotopy Analytic Solutions

The rule of solution expression and the involved
boundary conditions direct us to select the following
initial guesses and auxiliary linear operators:

f0(η) = λη +(1−λ )(1− exp(−η)) ,
θ0(η) = exp(−η) ,

(16)

L f ≡
d3

dη3 −
d

dη
, Lθ ≡

d2

dη2 −1 . (17)



794 A. Mushtaq et al. · Exponentially Stretching Sheet in a Powell–Eyring Fluid

If p ∈ [0,1] is an embedding parameter and h̄ denotes
the non-zero auxiliary parameter, then the generalized
homotopic equations corresponding to (6) – (8) are

(1− p)L f [F(η , p)− f0(η)] = ph̄N f [F(η , p)] , (18)

(1− p)Lθ [Θ(η , p)−θ0(η)] =
ph̄Nθ [F(η , p),Θ(η , p)] ,

(19)

F(η ; p)|
η=0 = 0 ,

∂F(η ; p)
∂η

∣∣∣∣
η=0

= 1 ,

∂F(η ; p)
∂η

∣∣∣∣
η=∞

= λ ,

(20)

Θ(η ; p)|
η=0 = 1 , Θ(η ; p)|

η→∞
= 0 , (21)

in which the nonlinear operators N f and Nθ are

N f [F(η ; p)] = (1+K)
∂ 3F(η ; p)

∂η3

+F(η , p)
∂ 2F(η ; p)

∂η2 −2

(
∂F(η ; p)

∂η

)2

−KΓ

(
∂F(η ; p)

∂η

)2
∂ 3F(η ; p)

∂η3 +2λ
2 , (22)

Nθ [F(η ; p),Θ(η ; p)] =
1
Pr

∂ 2Θ(η , p)
∂η2

+F(η ; p)
∂Θ(η ; p)

∂η
−Θ(η ; p)

∂F(η ; p)
∂η

. (23)

Expanding F(η ; p) and Θ(η ; p) using the Taylors se-
ries about p = 0, we have

F(η ; p) =
∞

∑
m=0

fm(η)pm ,

fm(η) =
1

m!
∂ mF(η ; p)

∂ pm

∣∣∣∣
p=0

, (24)

Θ(η ; p) =
∞

∑
m=0

θm(η)pm ,

θm(η) =
1

m!
∂ mΘ(η ; p)

∂ pm

∣∣∣∣
p=0

, (25)

and the final solutions are retrieved at p = 1. The func-
tions fm and θm can be obtained through the defor-
mation of (18) – (23). Explicitly mth-order deformation

equations corresponding to (18) – (23) are

L f [ fm (η)−χm fm−1 (η)] = h̄R f
m (η) , (26)

Lθ [θm (η)−χmθm−1 (η)] = h̄Rθ
m (η) , (27)

fm(0) = 0 , f ′m(0) = 0 , f ′m(∞) = 0 ,

θm(0) = 0 , θm(∞) = 0 ,
(28)

R f
m (η) = (1+K) f ′′′m−1 +2λ

2 (1−χm)

+
m−1

∑
k=0

fm−1−k f ′′k −2
m−1

∑
k=0

f ′m−1−k f ′k

−KΓ

m−1

∑
k=0

f ′′m−1

m−1

∑
k=0

f ′′′k−l f ′′l , (29)

Rθ
m (η) =

1
Pr

θ
′′
m−1

+
m−1

∑
k=0

[
fm−1−kθ

′
k−θm−1−k f ′k

]
; (30)

χm =

{
0, m≤ 1,

1, m > 1.
(31)

Now (26) – (31) can be easily solved by using sym-
bolic computational softwares such as Mathematica or
Maple for m = 1,2,3, . . . Here it is pertinent to mention
that the boundary condition at infinity can be exactly
satisfied by means of HAM, but not by the shooting
method.

4.1. Error Analysis and Convergence of the Homotopy
Solutions

The solutions given by (26) – (31) contain the aux-
iliary parameter h̄ which can easily adjust and control
the convergence of the series solutions. To obtain the
suitable value of this parameter, we have plotted the h̄-
curves for f and θ at 15th-order of approximations (see
Fig.1). Here admissible values of h̄ lie in the flat por-
tion of these curves. For λ = 0.5, the interval of con-
vergence for f and θ is [−0.7,−0.2]. Further the ad-
missible range of h̄ shrinks as the values of the velocity
ratio λ are increased. To see the accuracy of solutions,
we define the averaged residual errors for functions f
and θ (see Liao [24] for details)

Em,1(h̄) =
1
N

K

∑
i=0

[
N f

(
m

∑
j=0

f j (i∆x)

)]2

, (32)

Em,2(h̄) =
1
N

K

∑
i=0

[
Nθ

(
m

∑
j=0

θ j (i∆x)

)]2

, (33)
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Fig. 1. h̄-curves of (a) f ′′(0) and (b) θ ′(0) at 15th-order of approximations.
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Fig. 2. Averaged residuals for the functions f and θ at 15th-order of approximations.

where ∆x = 10/N and N = 20. The averaged resid-
ual errors Em,1 and Em,2 have been plotted versus h̄ for
some fixed values of parameters in Figure 2a and b at
15th-order of approximations. From these curves, we
can obtain the best possible values of h̄ by using the
command Minimize of the software Mathematica.

5. Results and Discussion

In this section, the behaviours of embedding physi-
cal parameters on the velocity, temperature, skin fric-
tion coefficient, and local Nusselt number are ad-
dressed. Graphical results shown in Figures 3 – 8 are
obtained by HAM. Figure 3 shows the effect of veloc-
ity ratio parameter λ on the velocity and the boundary
layer thickness. The velocity being a strong function
of λ increases with an increase in λ . When λ > 1, the

thickness of the boundary layer decreases with an in-
crease in λ . Here the straining motion near the stag-
nation region increases so the acceleration of the ex-
ternal stream increases which causes a reduction in
the boundary layer thickness and as a consequence the
horizontal velocity increases. On the other hand, when
λ < 1, the flow has an inverted boundary layer struc-
ture. Here the sheet velocity Uw(x) exceeds the veloc-
ity of external stream U∞(x). It is found that a bound-
ary layer is not formed for λ = 1. The influence of
fluid parameter K on the velocity is observed in Fig-
ure 4. An increase in K may be either regarded as a de-
crease in the viscosity or a decrease in rheological ef-
fects of the Powell–Eyring fluid. Here we notice that
velocity and boundary layer thickness are increasing
functions of K when λ < 1. This observation leads to
the conclusion that the increase in the elastic effects of
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Fig. 3. Influence of λ on f ′.
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Fig. 5. Influence of Γ on f ′.

the Powell–Eyring fluid leads to a thinner momentum
boundary layer. However an opposite trend is noticed
when λ > 1. Figure 5 is plotted to perceive the effects
of dimensionless fluid parameter Γ on the velocity. It is
seen that when λ < 1, an increase in Γ shifts the pro-
files towards the boundary indicating a diminution in
the boundary layer thickness. This notion is quite un-
derstandable since an increase in Γ accompanies with
a decrease in kinematic viscosity.

Figures 6 – 8 plot the temperature profiles versus η

for various values of parameters. Figure 6 shows that
the temperature θ is a decreasing function of λ . This
outcome may be inferred to the conclusion that a larger
velocity of the sheet corresponds to the thicker thermal
boundary layer. There is a slight decrease in the tem-
perature θ when K is increased, and the temperature

K 0, 0.5, 1, 1.5

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

f'

0.5, 0.1

Fig. 4. Influence of K on f ′.

0, 0.3, 0.6 , 1

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

K 0.5, 0.1, Pr 1

Fig. 6. Influence of λ on θ .

θ is negligibly affected by varying Γ (see Fig.7). Here
unlike the velocity distributions, the parameters have
a similar behaviour on the thermal boundary layer and
rate of heat transfer at the sheet for all the values of
λ . Due to the absence of viscous dissipation effects,
the fluid parameters K and Γ are not directly involved
in the energy equation, and therefore these parameters
have a smaller impact on the thermal boundary layer.
Figure 8 indicates that the temperature profiles move
towards the boundary when Pr is increased causing
a reduction in the thermal boundary layer thickness.
Physically this is attributed to the fact that a larger
Prandtl number has a relatively lower thermal diffu-
sivity. Thus an increase in Pr reduces the conduction
and thereby increases the variation in the thermal char-
acteristics. In other words the profiles become increas-
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Fig. 7. Influence of K on θ .

K Γ λ Re1/2
x Cf

√
2L
x Nu/Re1/2

x

HAM Numerical HAM Numerical
0.0 0.1 0.1 −1.253580 −1.253590 0.977953 0.977955
0.5 −1.530419 −1.530420 1.022158 1.022158
1.0 −1.766459 −1.766456 1.050549 1.050549
1.5 −1.975250 −1.975260 1.070644 1.070644
0.5 0.0 −1.535315 −1.535315 1.023016 1.023016

0.5 −1.509342 −1.509342 1.018406 1.018406
1.0 −1.478121 −1.478140 1.012648 1.012648
1.5 −1.414220 −1.413130 1.003943 1.003520
0.5 0.2 −1.441522 −1.441520 1.040756 1.040756

0.3 −1.343664 −1.343664 1.066060 1.066060
0.5 −1.069109 −1.069109 1.119838 1.119838
0.7 −0.701535 −0.701539 1.174081 1.174081

Table 1. Values of skin
friction coefficient Re1/2

x Cf
and local Nusselt number√

2L
x Re−1/2

x Nux for dif-
ferent values of K and Γ

when λ = 0.1 and Pr = 1.

ingly steeper when Pr is increased. Therefore the local
Nusselt number, being proportional to the initial slope,
increases with an increase in Pr .

The numerical values of the skin friction coefficient
and the local Nusselt number have been tabulated in
Table 1. The values are computed by both HAM and
shooting method. We found that a larger drag force
is required to displace the fluid over an exponentially
stretching sheet when compared to the linearly stretch-
ing sheet. The magnitude of the skin friction coefficient
significantly increases with an increase in K. However
there is a decrease in the coefficient of skin friction
when Γ is increased. From the industrial point of view
this is a useful result since the power generation in-
volved in displacing the fluid over the sheet can be re-
duced by assuming larger values of Γ . In accordance
with the observations noted in [9] for a linearly stretch-
ing sheet, the magnitude of the skin friction coefficient
significantly decreases with an increase in the velocity
ratio λ . We already noticed that the thermal boundary

Pr = 0.4,  0.72,  1.2,  2

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

K 0.5, 0.1

Fig. 8. Influence of Pr on θ .

layer thickness decreases when K is increased. This re-
sults in a larger rate of heat transfer at the stretching
sheet. Further the magnitude of the local Nusselt num-
ber slightly decreases with an increase in Γ .

6. Conclusions

Boundary layer flow and heat transfer of a Powell–
Eyring fluid in the region of stagnation point towards
an exponentially stretching sheet are investigated. The
developed mathematical problems have been solved
for the series solutions by the well-known homotopy
analysis method (HAM). A very good averaged resid-
ual is found at only 15th-order of approximations. The
HAM solutions are also found in excellent agreement
with the obtained numerical solution. We noticed that
velocity and boundary layer thickness increase with an
increase in the rheological fluid parameter K. This in-
crease accompanies with larger wall shear stress. On
the other hand velocity and skin friction coefficient are
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decreasing functions of dimensionless fluid parameter
Γ . The results indicate that the drag force in displacing
the fluid over an exponentially stretching sheet is larger
than that over a linearly stretching surface. Moreover
temperature and thermal boundary layer thickness de-
crease with an increase in K and Pr . This reduction
gives rise to the rate of heat transfer at the sheet. The
series solutions for the case of Newtonian fluid which

are not yet computed can be obtained by choosing
K = 0.
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