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Boundary layer equations are derived for the first time for an Oldroy-B fluid. The symmetry anal-
ysis of the equations is performed using Lie Group theory and the partial differential system is trans-
ferred to an ordinary differential system via symmetries. Resulting equations are numerically solved
for the case of the stretching sheet problem. Effects of non-Newtonian parameters on the solutions
are discussed.
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1. Introduction

The Newtonian fluid model predicts a linear rela-
tionship between the stress tensor and the velocity gra-
dient. Stress constitutive relations of some real flu-
ids however do not obey this linear relationship and
many different models which are classified as non-
Newtonian fluids were proposed to explain the com-
plex behaviour between stress and velocity gradient.
Usually, the stress constitutive relations of such mod-
els inherit complexities which lead to highly nonlin-
ear equations of motion with many terms. To simplify
the extremely complex equations, one alternative is to
use the boundary layer theory which is known to effec-
tively reduce the complexity of Navier–Stokes equa-
tions and reduce drastically the computational time.
Since there are many non-Newtonian models and new
models are being proposed continuously, the boundary
layer theory for each proposed model also appear in the
literature. Some of the example boundary layer models
corresponding to different non-Newtonian fluids were
proposed and solved already [1 – 23].

In this work, boundary layer equations are sys-
tematically developed for the Oldroy-B fluid, a well
known non-Newtonian fluid model which combines
the effects of relaxation and retardation observed in
many real fluids. A complete symmetry analysis of the

boundary layer equations is presented. Using one of
the symmetries, the partial differential system is trans-
formed into an ordinary differential system. Stretching
sheet boundary conditions are taken in the analysis.
The resulting ordinary differential system is numeri-
cally solved by a finite difference algorithm. The effect
of non-Newtonian parameters on the velocity profiles
are shown in the graphs.

Some of the recent works on Oldroy-B fluids are
as follows: Bhatnagar et al. [16] investigated the flow
of an Oldroy-B fluid due to a stretching sheet in the
presence of a free stream velocity and found that
their numerical solutions agree well with their per-
turbation solutions. Hayat et al. [24] obtained an ex-
act solution for magnetohydrodynamic flow over an
infinite oscillatory plate with the entire system rotat-
ing about an axis normal to the plate. Fetecau and
Kannan [25] studied the one-dimensional unsteady
flow of an Oldroy-B fluid induced by the motion of
a flat plate. Haroun [26] considered the peristaltic flow
of an Oldroy-B fluid and presented an approximate
solution using perturbation theory. Hayat et al. [27]
examined the effect of Hall current on the rotating
flow of an Oldroy-B fluid in a porous medium tak-
ing into consideration the modified Darcy law. To
the best of authors’ knowledge, boundary layer equa-
tions in terms of velocity components and symme-
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try reductions of Oldroy-B fluids do not exist in the
literature.

2. Equations of Motion and Boundary Layer
Equations

The Cauchy stress tensor for an Oldroy-B fluid is

T =−pI+S , (1)

where the constitutive relation for extra stress tensor is

S+λ1
DS
Dt

= µ

[
A1 +λ2

DA1

Dt

]
, (2)

A1 = L+LT, L = grad V,

DS
Dt

=
dS
dt
−LS−SLT .

(3)

V is the velocity vector, A1 is the first Rivlin-Ericksen
tensor, and µ is the viscosity, λ1 and λ2 are relaxation
and retardation time, respectively. Steady-state equa-
tions of motion in two dimensions in the absence of
body force including mass conservation can be written
as
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where x∗ is the spatial coordinate along the surface, y∗

is vertical to it, u∗ and v∗ are the velocity components
in the x∗ and y∗ coordinates. The fluid is assumed to
be incompressible. Using (1) – (3) in the equations of
motion, (4) – (6) one finally has
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The usual boundary layer assumptions are made, i.e.
x∗ ∼O(1), y∗ ∼O(δ ), u∗ ∼O(1), v∗ ∼O(δ ), and
p∗ ∼O(1). The highest-order terms are retained, and
the momentum equations become
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∂ p∗

∂y∗
= 0 (11)

from which dependence of pressure on y∗ is elimi-
nated. In the calculations, λ1 ∼O(1), λ2 ∼O(1), and
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µ ∼O(δ 2) are assumed where δ is the boundary layer
thickness. Dimensionless variables and parameters are
defined as follows:

x =
x∗

L
, y =

y∗

δ
, u =

u∗

V
, v =

v∗L
V δ

, p =
p∗

ρV 2 ,

ε =
µL

ρV δ 2 , ε1 =
λ1V

L
, ε2 =

λ2V
L

,

(12)

where L is a characteristic length, and V is a refer-
ence velocity. Expressing the pressure in terms of outer
velocity, the final dimensionless boundary layer equa-
tions including the mass conservation become
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+
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= 0 , (13)
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where U is the usual outer dimensionless velocity sub-
stituted for pressure gradient. ε = 1/Re, ε1, and ε2 can
be defined as the dimensionless relaxation and retar-
dation parameters. For ε1 = 0, the equations reduce to
those of a second-grade fluid, and for ε2 = 0, they re-
duce to those of an upper convected Maxwell fluid.
For ε1 = 0 and ε2 = 0, the fluid is Newtonian, and
the dimensional boundary layer equations can be found
in [28] for example.

3. Lie Group Theory and Symmetry Analysis

The Lie Group theory is employed in search of sym-
metries of the equations. Details of the theory can be
found in Bluman and Kumei [29] and Stephani [30].
The infinitesimal generator for the problem is

X = ξ1(x,y,u,v)
∂

∂x
+ξ2(x,y,u,v)

∂

∂y

+η1(x,y,u,v)
∂

∂u
+η2(x,y,u,v)

∂

∂v
.

(15)

A straightforward calculation yields

ξ1 = ax+b , ξ2 = cx+d ,

η1 = au , η2 = cu .
(16)

The classifying relation for the outer velocity is

(ax+b)
d
dx

(UU ′)−a(UU ′) = 0 . (17)

Some of the symbolic packages developed to calculate
symmetries fail to produce the above results due to the
arbitrary outer velocity function and some others re-
quire user intervention during the calculation process.
There are four finite parameter Lie Group symmetries
represented by parameters a,b,c, and d. Parameters b
and d represent translational symmetries in x and y co-
ordinates, respectively. Parameter a is a restricted scal-
ing symmetry. There is an additional finite parameter
Lie Group symmetry represented by parameter c. This
type of symmetry is uncommon in boundary layers of
non-Newtonian fluids. Usually fluid problems inherit
some type of scaling symmetry due to the Buckingham
Pi theorem. For the relationship of the Buckingham Pi
theorem with the scaling symmetries, see Bluman and
Kumei [29].

4. Symmetry Reductions for the Stretching Sheet
Problem

For the stretching sheet problem, the outer velocity
U is zero, and the boundary conditions can be written
as

u(x,0) = αx , v(x,0) = 0 ,

u(x,∞) = 0 ,
∂u
∂y

(x,∞) = 0 .
(18)

Usually boundary conditions put much restriction
on the symmetries which may lead to removal of all
the symmetries. In our case however, some of the sym-
metries remain stable after imposing the boundary con-
ditions. For nonlinear equations, the generators should
be applied to the boundaries and boundary conditions
also [29]. Applying the generator to the boundary y = 0
yields c = 0 and d = 0. Applying the generator to the
first boundary condition yields b = 0, and the remain-
ing boundary conditions do not impose further restric-
tions and hence only one of the symmetries survive af-
ter the application of boundary conditions

ξ1 = ax , ξ2 = 0 , η1 = au , η2 = 0 . (19)

Note that since the outer velocity U = 0, the classifying
relation (17) is satisfied identically.
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From (19), the associated equations which define
similarity variable and functions are

dx
x

=
dy
0

=
du
u

=
dv
0

. (20)

Solving the system yields the similarity functions

u = x f (y) , v = g(y) , (21)

where y is the similarity variable. Substituting all into
the boundary layer equations yields the ordinary dif-
ferential system

f +g′ = 0 , (22)

f 2 +g f ′+ ε1(2g f f ′+g2 f ′′) =

ε[ f ′′+ ε2 ( f f ′′+g f ′′′− f ′2−g′ f ′′)] .
(23)

Fig. 1 (colour online). Effect of relaxation parameter ε1 on
the similarity function f related to the x component of veloc-
ity (ε2 = 1, ε = 10).

Fig. 3 (colour online). Effect of retardation parameter ε2 on
the similarity function f related to the x component of veloc-
ity (ε1 = 1, ε = 10).

The boundary conditions also transform as follows:

f (0) = α , g(0) = 0 ,

f (∞) = 0 , f ′(∞) = 0 .
(24)

5. Numerical Results

Equations (22) and (23) are numerically integrated
using a finite difference scheme subject to the bound-
ary conditions (24). In Figure 1, f function and in Fig-
ure 2, g function related to the x and y components
of the velocities are drawn for various dimension-
less relaxation ε1 parameters. Boundary layer becomes
thicker for the lower relaxation parameters. Decrease
of the relaxation parameter implies a transformation
of Oldroy-B character of the fluid into a second-grade

Fig. 2 (colour online). Effect of relaxation parameter ε1 on
the similarity function g related to the y component of veloc-
ity (ε2 = 1, ε = 10).

Fig. 4 (colour online). Effect of retardation parameter ε2 on
the similarity function g related to the y component of veloc-
ity (ε1 = 1, ε = 10).
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Fig. 5 (colour online). Effect of viscosity parameter ε on the
similarity function f related to the x component of velocity
(ε1 = 1, ε2 = 1).

fluid character. Therefore second-grade fluids possess
thicker boundary layers compared to Oldroy-B fluids
if the remaining non-Newtonian parameters are taken
identical in both models. There is an absolute increase
in the y component of the velocity which is negative
over the whole domain for a decrease in the relaxation
parameter ε1 as can be seen from Figure 2.

In comparison, increase of the retardation parame-
ter ε2 results in a thicker boundary layer (Fig. 3). This
means Oldroy-B fluids possess thicker boundary layers
compared to the upper convected Maxwell fluids with
similar parameters. Velocity in the normal direction,
which is negative, increases absolutely for the decreas-
ing retardation parameter (Fig. 4). Finally the effect of
parameter ε which is inverse of Reynolds number and
associated with the viscous effects is investigated in
Figures 5 and 6. As viscous effects increase, boundary
layers thicken as expected.

6. Concluding Remarks

Boundary layer equations of an Oldroy-B fluid are
derived for the first time. The Lie group theory is

Fig. 6 (colour online). Effect of viscosity parameter ε on the
similarity function g related to the y component of velocity
(ε1 = 1, ε2 = 1).

applied to the equations. Equations admit four finite
parameter Lie Group transformations. For stretching
sheet boundary layer conditions, only one of the sym-
metries remains stable. Using this symmetry, the par-
tial differential system is transferred into an ordinary
differential system via a similarity transformation. The
resulting ordinary differential system is solved nu-
merically using a finite difference scheme. Effects of
the viscosity, the relaxation and retardation parameters
on the boundary layers are depicted in figures. Spe-
cial to this type of motion, it is found that a grad-
ual transformation from an Oldroy-B fluid character to
a second-grade fluid character thickens the boundary
layer. In comparison, a gradual transformation from
an Oldroy-B fluid character to an upper-convected
Maxwell fluid character narrows the boundary lay-
ers.
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