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The main aim of the present work is to propose a new and simple algorithm to obtain a quick
and accurate analytical solution of the time fractional Fokker—Plank equation which arises in various
fields in natural science, including solid-state physics, quantum optics, chemical physics, theoretical
biology, and circuit theory. This new and simple algorithm is an innovative adjustment in Laplace
transform algorithm which makes the calculations much simpler and applicable to several practical
problems in science and engineering. The proposed scheme finds the solutions without any discretiza-
tion or restrictive assumptions and is free from round-off errors and therefore reduces the numerical
computations to a great extent. Furthermore, several numerical examples are presented to illustrate

the accuracy and the stability of the method.
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1. Introduction

The idea of fractional-order derivatives initially
arose from a letter by Leibnitz to L'Hospital in 1695.
Fractional calculus has gained considerable popularity
and importance during the past three decades, mainly
due to its applications in numerous fields of science
and engineering. One of the main advantages of using
fractional-order differential equations in mathemati-
cal modelling is their non-local property. It is a well-
known fact that the integer-order differential operator
is a local operator whereas the fractional-order differ-
ential operator is non-local in the sense that the next
state of the system depends not only upon its cur-
rent state but also upon all of its proceeding states.
In the last few decades, many authors have made no-
table contributions to both theory and application of
fractional differential equations in areas as diverse as
finance [1], physics [2—5], control theory [6], and
hydrology [7-9].

The Fokker—Planck equation (FPE) was first used by
Fokker and Planck [10] to describe the Brownian mo-
tion of particles. A FPE describes the change of proba-
bility of a random function in space and time; hence it
is naturally used to describe solute transport. Nonlinear

FPE has important applications in various areas such as
plasma physics, surface physics, population dynamic,
biophysics, engineering, neurosciences, nonlinear hy-
drodynamics, polymer physics, laser physics, pattern
formation, psychology, and marketing [11]. Recently,
Yildirim [12] has applied to obtain the solutions of the
time fractional FPE by using the homotopy perturba-
tion method (HPM). In this paper, we have solved the
time fractional FPE by coupling of HPM and Laplace
transform method (LTM) to the homotopy perturbation
transform method (HPTM). In one variable case, the
nonlinear FPE is written in the following form:

Dyu= [~ DyA(x,t,u) + D}B(x,t,u)|u(x,t), (1)

with the initial condition given by u(x,0) = f(x),
x € R, where A(x,¢,u) and B(x,t,u) are drift and diffu-
sion coefficient, respectively. The drift and diffusion
coefficients may also depend on time. Equation (1)
is a linear second-order partial differential equation of
parabolic type.

In this paper, the HPTM basically illustrates how
the Laplace transform can be used to approximate
the solutions of the linear and nonlinear differential
equations by manipulating the HPM. The perturba-
tion methods which are generally used to solve non-
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linear problems have some limitations, e.g. the ap-
proximate solution involves series of small parameters
which poses a difficulty since the majority of nonlin-
ear problems have no small parameters at all. Although
appropriate choices of small parameters some times
lead to ideal solutions but in most of the cases un-
suitable choices lead to serious effects in the solutions.
The HPM was introduced and applied by He [13 —18].
Recently, many researchers [19—-24] have obtained
the series solution of the fractional differential equa-
tion by using HPM. The proposed method is a cou-
pling of the Laplace transformation, the HPM, and
He’s polynomials mainly due to Ghorbani [25, 26].
In recent years, many authors have paid attention to
studying the solutions of linear and nonlinear par-
tial differential equations by using various methods
which combined the Laplace transform. Among these
are the Laplace decomposition methods [27, 28] and
the homotopy perturbation transform method [29 — 33].
Newly, Faraz etal. [34-36] have applied to obtain
the solutions of the fractional partial differential equa-
tion in physics by using fractional variational iteration
method.

The main aim of this article presents approximate
analytical solutions of the time fractional FPE by using
HPTM, which is a coupling of HPM and Laplace trans-
form method. We discuss how to solve time frac-
tional FPE by using HPTM. Probability density func-
tions u(x,t) for different fractional Brownian motions
and also for the standard motion for various particu-
lar cases are derived successfully and presented graph-
ically. The elegance of this article can be attributed
to the simplistic approach in seeking the approximate
analytical solutions of time fractional Fokker—Planck
equation. Our concern in this work is to consider the
numerical solution of the nonlinear FPE with time-
fractional derivatives of the form

DPu = [ — DA(x,t,u) + DiB(x,t,u)|u(x,t),
0<a<l, )

where o is a parameter describing the order of the time
fractional derivatives. The function u(x,7) is assumed
to be a causal function of time and space, i. e. vanishing
for t < 0 and x < 0. The general response expression
contains parameters describing the order of the frac-
tional derivatives that can be varied to obtain various
responses. In the case of o = 1, the fractional equation
reduces to the classical nonlinear FPE.
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Definition 1. The Laplace transform of the function
f(t) is defined by

Fe&) =[] = [ e ) 3

Definition 2. The Laplace transform L[u(x,t)] of
the Riemann-Liouville fractional integral is defined
as [37]

L{Ifu(x,t)] = s “Llu(x,1)] . 4)

Definition 3. The Laplace transform L[u(x,?)] of the
Caputo fractional derivative is defined as [37]

n—1

LID/%u(x,t)] = s"*Llu(x,1)] =Y, sne=k=1, () (¢ 0) ,
k=0

n—1<no<n. (&)

2. Basic Idea of Fractional Homotopy Perturbation
Transform Method

In order to elucidate the solution procedure of the
fractional Laplace homotopy perturbation method, we
consider the following nonlinear fractional differential
equation:

Dtnau(xat)+R[x]u(xvt)+N[x]u(xat) :q(xvt)v 6)
t>0, xéR, n—1<no<n, u(x,0)=h(x),
where D}'* = g—;(;. R[x] is the linear operator in x, N|x]
is the general nonlinear operator in x, and g(x,?) are
continuous functions. Now, the methodology consists
of applying the Laplace transform first on both sides
of (6). So we get

L[D}*u(x,t)] + L[R[x]u(x,1)

+ Nxu(x,1)] = L[q(x,1)] . o

Now, using the differentiation property of the Laplace
transform, we have

Llu(x,t)] =5 "h(x) —s"*L[q(x,1)]

8
+s"L[R[xJu(x,t) +Nx]u(x,1)] . ©

Operating the inverse Laplace transform on both sides
in (8), we get

u(x,t) = G(x,t) — L™} (f”O‘L[R[x]u(x,t)
©))
+Nlxlu(x,1)]).
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where G(x,t) represents the term arising from the
source term and the prescribed initial conditions. Fur-
ther, applying the classical perturbation technique, we
can assume that the solution can be expressed as
a power series in p as given below:
ux,r) =3, p"un(x,t), (10)
n=0
where the homotopy parameter p is considered as
a small parameter (p € [0, 1]). The nonlinear term can
be decomposed as
Nu(x,t) = 3 p"Hn(u), (1D
n=0
where H, are He’s polynomials [25, 26] of ug,ui,us,

...,uy and it can be calculated by the following for-
mula:

1 0" o
H,(ug,uy,up,. .. ,u,) = — {N( plu')} .
n( n) n'apn 1:20 1 p:O

n=0,1,2,3,...

Substituting (10) and (11) in (9) and using HPM
[13-18], we get

é;ﬂmﬂﬂﬂ‘—GuJ)p<L4{§ma
.L[Rni)pnun(x,t) +;)p'1Hn(u)H> '

This is coupling of the Laplace transform and ho-
motopy perturbation method using He’s polynomials.
Now, equating the coefficient of corresponding power
of p on both sides, the following approximations are
obtained:

(12)

pO:MO(x7t):G(x7t)7 (13)

Py (x,r) =L (s"o‘L[R[x]un_l(x,t) +Hn_1(u)]> )
n>1.

Proceeding in this same manner, the rest of the com-
ponents u,(x,t), n > 1, can be completely obtained,
and the series solutions are thus entirely determined.

Finally, we approximate the analytical solution
u(x,t) by the truncated series

N

u(x,t) = 1\1113; Y un(x,1). (14)
n=1
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The convergence of series (14) has been proved by He
in his paper [18]. It is worth to note that the major ad-
vantage of He’s homotopy perturbation method is that
the perturbation equation can be freely constructed in
many ways (therefore is problem dependent) by homo-
topy in topology and the initial approximation can also
be freely selected.

3. Theoretical and Numerical Experiments

In this section, we shall illustrate the fractional ho-
motopy perturbation transform technique by several
examples. These examples are somewhat artificial in
the sense that the exact answer, for the special case
o =1 is known in advance and the initial and bound-
ary conditions are directly taken from this answer.
Nonetheless, such an approach is needed to evaluate
the accuracy of the analytical techniques and to exam-
ine the effect of varying the order of the time-fractional
derivatives on the behaviour of the solution. All the
results are calculated by using the symbolic calculus
software Mathematica 7.

Example 1. We consider the following linear time
fractional Fokker—Plank equation [12]:
X“u

2
Dfu = —Dx(xu)—l—D)z(( 3 ) :

x>0, 0<a<l,

s5)

with the initial condition u(x,0) = x. The exact solution
of the problem is given by u(x,t) = xe' for a = 1.

First of all applying the Laplace transform [29, 30]
on both sides in (15) and using the differentiation prop-
erty of Laplace transform, we get

Llu(x,1)] =s1x+sO‘L{—Dx(xu)+D§ <x22”ﬂ . (16)

The inverse Laplace transform on both sides implies
that

u(x,t) =x+L"" (M‘L {— D, (xu)+D? (xzz“)D . (17)

Now, we apply the homotopy perturbation method
[14-19] and get

;)p”un(x, t)=x+pL! (so‘L [—Dx (xni(‘)p"un(x’t))
+D? (x;; p”un(x,t))]> .

(18)
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Then, equating the coefficient of corresponding power
of p on both sides in (18) results in

Y up(x,1) =x,

P () =L (SO‘L { — Dy (xuy)

()]

tnDt
=x——,n=1273...
F(l’la + 1) ) b )
and so on, in this manner the rest of components of
the homotopy perturbation solution can be obtained.
Using the above terms, the solution u(x,#) obtained by
the present method is given as

toc t2a t3a
H=x(1
u(x1) x( I CE R E TS
oo tka o
+... ) =x — =xE,(t7),
) Z;)r(kaﬂ) a(t%)

where Eq(t) = X5, F(#’(H)’ o > 0, is the Mittag—
Leffler function in one parameter. As o = 1, this series
has the closed form xe’, which is an exact solution of
the standard Fokker—Plank equation. It can be seen that
the solution obtained by the present method is nearly
identical with the exact solution for standard Fokker—
Plank equation, i.e. for oo = 1.

Figures la and b show the comparison between
well-known exact solution and approximate analytical

(a)

um’ac.f(") ‘-_-',_-"' 4

it i A
it s A !
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solution which is obtained by the present method. It
can be seen from Figure 1a and b that the solution ob-
tained by the present method is nearly identical with
the exact solution for standard Fokker—Plank equation,
i.e. for oo = 1. It is evident that the efficiency of this
approach can be dramatically enhanced by computing
further terms of u(x,7) when the homotopy perturba-
tion transform method is used. The above result is in
complete agreement with Yildirim [12]. It is clear that
no linearization or perturbation was used and a closed
form solution is obtainable by adding more terms to
the homotopy perturbation series.

Example 2. In this example, we consider the linear
time fractional Fokker—Plank equation [12] as follows:

2
Xu X U
D%u = —Dx(6 ) +D? (12 ) ,

xt>0, 0<a<l,

19)

with the initial condition u(x,0) = x*. The exact so-
lution of the problem is given by u(x,1) = x*ez for
o=1

Now, by applying the aforesaid homotopy perturba-
tion method [14 - 19], we have

5ttt =5+ pt (L[ -0 E3. )
n=0 n=0
2 x2 - n
JFDX(12 Zz)p u,,(x,t)ﬂ). (20)

(b)

(1)

uuﬂpr_ '

B i I i N e 7
P i s A A A
o i . A 2 il

Fig. 1 (colour online). Graphs (a) and (b) show the comparison between the exact solution and approximate analytical solution

at oo = 1 for Example 1.
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Then, equating the coefficient of corresponding power

of p on both sides in (20), we get

P ug(x,1) =22,

P i () =L (saL{_Dx (xgn)
2
5 (X*uy
+01()])
x2 toc n
-_* (T —1,2,3,...
1—1(a+1)<2> b) n b b b b

and so on, in this manner the rest of components of the
homotopy perturbation series can be obtained. Thus,
we have

_ (t*) (t*)?
ulx,t) =" (1 taret ) T 2ret)
(™)
T BrGat) +)

- 1 1%\ o (1
- ,;;)F(koc—i—l)(Z) - “‘<2>'
For the standard case, i.e. for oo = 1, this series has
the closed form of the solution u(x,r) = x2e? which is
an exact solution of the given standard Fokker—Plank
equation (19) for o = 1. The above result is in com-
plete agreement with Yildirim [12].

It can be seen from Figure 2a and b that the solution
obtained by the present method is nearly identical with
the exact solution for standard Fokker—Plank equation,
i.e.foro=1.

(a)

umrm'.r(f) ) .-"'r; T

Example 3. In this example, we consider the linear
time fractional Fokker—Plank equation [12]

4 2
Dfu= —Dx(z - x;‘) +D3(),

(21
xt>0, O<a<l,

with the initial condition u(x,0) = x?. The exact solu-
tion of the problem is given by u(x,7) = x> ¢’ for o = 1.

By applying the homotopy perturbation method
[13-18], we have

oo

> Pl un(x,1) =x>+pL! (so‘L[—Dx

n=0
~{i(§p"un(x,t))2— (ni)p”un(x,t))} (22)
D2 ( io pnu,,@c,t))zD .

Equating the coefficient of corresponding power of p
on both sides in (22), we get

W =

O up(x,1) =%,

4 2
Pl (xr) =L (s_aL{Dx <u0 - x;t0>
x

tOt

I'lo+1)’

=

)| ) =

priuo(x,r)=L"" (saL{—Dx <8uou1 - le)
x

(b)

Fig. 2 (colour online). Graphs (a) and (b) show the comparison between the exact solution and approximate analytical solution

at oo = 1 for Example 2.
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Fig. 3 (colour online). Graphs (a) and (b) show the comparison between the exact solution and approximate analytical solution

at o = 1 for Example 3.

) 5 tZOt
D2(2 P
+ D5 uoul)D *TRat1)’

4(u* 42
P ius(re) =L (‘aL[—Dx (WW - x;tz)
X

t3oc
r'(3o+1)

PR

+D (13 +2u0u2)}) =x°

In this manner, the rest of components of the homotopy
perturbation transform solution can be obtained. Thus
the solution u(x,7) is given as

5 1o t2a t3a
1) =x2(1
uxr) = x (+F(a+1)+1“(2a—|—1)+1"(3a+1)
1o (1) 2p
= = PE (1
* > xkg;)r(kaﬂ) ¥ Ea(1")

Now for the standard case, i. €. for @ = 1, this series has
the closed form of the solution u(x,7) = x?¢', which is
an exact solution of the given standard Fokker—Plank
equation (21) for o = 1.

Figures 3a and b show the comparison between
well-known exact solution and approximate analytical
solution which is obtained by the present method. It
can be seen from Figure 3a and b that the solution ob-
tained by the present method is nearly identical with
the exact solution for standard Fokker—Plank equation,
i.e. for a = 1. The above result is in complete agree-
ment with Yildirim [12].

4. Numerical Result and Discussion

In this section, Figures 4 — 6 show the evaluation re-
sults of the approximate analytical solution for Exam-
ple 1 to 3, respectively, and show the behaviour of the
approximate solution obtained by the HPTM for differ-
ent fractional Brownian motions o = 0.7,0.8,0.9 and
for standard motions, i.e. for o¢ = 1, at the value of
x=1.

From Figures 4-6, it is seen that the approximate
analytical solution obtained by the present method
(HPTM) increases very rapidly with the increases in
t at the value of x = 1 for all Examples 1-3. The be-
haviour of the solution obtained by the present method
for all examples is identical.

T 1T T

35F

30F

wkter!,:
0.0 02 04 0.6 0.8

10

Fig. 4 (colour online). Plot of u(x,?) vs. time ¢ at x = 1 and
different values of o for Example 1.



S. Kumar - Numerical Computation of Time-Fractional Fokker—Planck Equation

181

S14f
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0.0 02 04 0.6 0.8 1.0

Fig. 5 (colour online). Plot of u(x,7) vs. time ¢ at x = 1 and
different values of o for Example 2.

5. Conclusion

This paper develops an effective modification of the
homotopy perturbation method, which is a coupling of
Laplace transform and homotopy perturbation method,
and studied its validity in a wide range with three ex-
amples of linear and nonlinear time fractional Fokker—
Planck equation. It provides the solutions in terms of
convergent series with easily computable components
in a direct way without using linearization, perturba-
tion or restrictive assumptions. It is clear that the ho-
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