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Some thermodynamic quantities for the Lennard-Jones (12,6) potential are expressed as analytical
formula at an isobaric process. The parameters of Lennard-Jones gases for 18 substances are obtained
by the second virial coefficient data. Also some thermodynamic quantities for benzene are calculated
numerically and drawn graphically. The inflexion point of the length L which depends on temperature
T and pressure P corresponds physically to a boiling point. L indicates the liquid phase from lower
temperature to the inflexion point and the gaseous phase from the inflexion point to higher temper-
ature. The boiling temperatures indicate reasonable values comparing with experimental data. The
behaviour of L suggests a chance of a first-order phase transition in one dimension.
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1. Introduction

In the previous papers the behaviours of the length
L and the heat capacity CP have suggested a chance
of a first-order phase transition in one dimension for
Stockmayer gases [1] and Morse gases [2] while Taka-
hasi had pointed out that the coexistence of two phases
is impossible in an one-dimensional substance for any
choice of the potential over 70 years ago [3]. The first-
order phase transition may be caused by the long-
range interaction for Stockmayer and Morse gases. On
the one hand, the Lennard-Jones potential has been
called a commonly empirical intermolecular potential
function for non-polar molecules which is due to the
short-range interaction. The integral of the partition
function for the Lennard-Jones potential in T –P en-
semble, however, can be hardly calculated up to now
while a second-order phase transition for the Lennard-
Jones potential may occur at the critical point [4]. From
the viewpoint of an isobaric process, this may be sig-
nificant to provide the behaviours of thermodynamic
quantities for the Lennard-Jones potential discussing
physically the phase transition between gaseous and
liquid phases.

In this work, the parameters for Lennard-Jones
gases are obtained by the second virial coefficients.
The partition function is expressed as analytical for-

mula. The length L, (dL/dT )p, enthalpy, and heat ca-
pacity are analytically represented as the two inten-
sive variables of T and P. These thermodynamic quan-
tities are determined through numerical calculations,
and are graphically displayed at atmospheric pressure
for C6H6. The chance of the first-order phase transi-
tion for the Lennard-Jones potential at boiling points
and atmospheric pressure is discussed.

2. Thermodynamic Functions of Lennard-Jones
Gases at Isobaric Process

The Lennard-Jones potential is described by

U(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]

, (1)

in which ε is the maximum energy of attraction, and
σ is that value of the intermolecular separation r for
which U(r) = 0. The configurational partition function
for the Lennard-Jones potential may be defined as

Q0(T,P) =
∫

∞

0
exp[−βU(r)−βPr]dr, (2)

where

β = 1/kT.
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Q0(T,P) is converted using integration by parts as fol-
lows:

Q0(T,P) =
1

βP

∫
∞

0
exp[−βU(r)−βPr]

·
[
−β

dU(r)
dr

]
dr

(3)

and

Q0(T,P) =
1

βP
Q(T,P). (4)

Introducing the new variables

u = 4βε , (5)

z = u
(

σ

r

)12
, (6)

q = βPσu1/12, (7)

a =− 1
12

, (8)

f (z) = z−
√

uz+qza, (9)

and

g(z) = z−
√

uz
2

. (10)

The partition function Q(T,P) is rewritten as

Q(T,P) =
∫

∞

0
exp[− f (z)]g(z)z−1 dz. (11)

The partition function in the T –P grand canonical en-
semble is expressed as the product of kinetic and con-
figurational partition functions,

Y (T,P,N1) =
(

2πmkT
h2

)N1/2

Q0(T,P)N1 . (12)

The Gibbs free energy is derived from (12):

G(T,P) = −R1T

[
log

(2πm)1/2

h

− 3
2

logβ − logP+ logQ(T,P)

]
,

(13)

where R1 = 0.103221 atm cm K−1 [2].
The properties of ideal gases for one dimension in

T –P ensemble may be dependent on a part of functions
(−3/2logβ − logP), in (13) and Q(T,P) is shown as
the configuration of intermolecular interaction.

The equation of state in one dimension is expressed
as

L =
(

∂G
∂P

)
T

(14)

=
R1T

P

[
1+

q
Q

∫
∞

0
exp[− f (z)]g(z)xa−1 dz

]
.

The derivative L with respect to T can be derived from
(14): (

∂L
∂T

)
P

=
R1

P

[
1+

q
Q

∫
∞

0
exp[− f (z)]

·g(z){ f (z)−1}za−1 dz

− q
Q2

∫
∞

0
exp[− f (z)]g(z)za−1 dz

·
∫

∞

0
exp[− f (z)]g(z){ f (z)−1}z−1 dz

]
.

(15)

The enthalpy is obtained as

H =−T 2

[
∂

∂T

(
G
T

)]
P

(16)

= R1T

[
3
2

+
1
Q

∫
∞

0
exp[− f (z)]g(z){ f (z)−1}z−1 dz

]
.

The heat capacity at constant pressure can be easily
derived from (16):

CP =
(

∂H
∂T

)
P

= R1

[
3
2

+
1
Q

∫
∞

0
exp[− f (z)]g(z)

· { f (z)2−2 f (z)}z−1 dz

− 1
Q2

{∫
∞

0
exp[− f (z)]g(z){ f (z)−1}z−1 dz

}2]
.

(17)

The integrals in which (11), (14) – (17) are contained
can be explicitly calculated in [5].

The second virial coefficients for the intermolecu-
lar potential U(r) may be found, for classical statistics,
from the well-known formula [4]

B(T ) =−2πNA

3

∫
∞

0
β

dU(r)
dr

exp[−βU(r)]r3 dr , (18)



A. Matsumoto · Takahasi Nearest-Neighbour Gas Revisited III; Lennard-Jones Gases 775

where NA is the Avogadro number. The second virial
coefficients for Lennard-Jones gases are expressed as

B(T ) =
2
3

πNAu1/4
σ

3
∫

∞

0
exp(−z+

√
uz)

·
(

z3/4− 1
2

√
uz1/4

)
z−1 dz

(19)

=−πNAu1/4σ3

6
[Γ (−1/4)F(−1/4,1/2;u/4)

+
√

uΓ (1/4)F(1/4,3/2;u/4)] , (20)

where F(a,b;x) is a confluent hypergeometric func-
tion.

3. Numerical Results

The parameters ε and σ of the Lennard-Jones poten-
tial (12,6) for 18 substances are determined from the
experimental data of the second virial coefficients [6]

Fig. 1. Length L for C6H6 vs. temperature at P = 1 atm; TB =
291 K.

Fig. 2. Derivative (dL/dT )P for C6H6 vs. temperature at P =
1 atm; TB = 291 K.

by the least squares method as shown in Table 1. Nu-
merical results obtained with the length, (dL/dT )p,
enthalpy, and heat capacity for C6H6 at atmospheric
pressure are displayed in Figures 1 – 4. As shown in
Figure 2, the curve of (dL/dT )p in (15) appears a max-
imum at the temperature T2 which is the inflexion
point of the length L. This curve of (dL/dT )p may
reach asymptotically to 0 with decreasing T and to 1
with increasing T beyond T2. Considering Figure 2,
the curve of L in Figure 1 is definitely away from T2
and the behaviours of ideal gases. Also, similar to
(dL/dT )p, the curve of the heat capacity in Figure 4
shows a maximum at the temperature T1 which is the
inflexion point of enthalpy H. The enthalpy reaches
the behaviour of ideal gases at higher temperature be-
yond T1. The heat capacity becomes asymptotically 1.5
R1 at higher temperature than T1. (dL/dT )p and CP
are originally not maxima but must diverge to an in-
finite according to three-dimensional models [7 – 9].
This point of L, however, corresponds physically to

Fig. 3. Enthalpy H for C6H6 vs. temperature at P = 1 atm;
TB = 291 K.

Fig. 4. Heat capacity Cp for C6H6 vs. temperature at P =
1 atm; TB = 291 K.
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Table 1. Parameters for the Lennard–Jones (12,6) potential
determined from experimental data of the second virial coef-
ficients [5].

Substance (ε/k)/K σ/Å
Ne 35.086 2.737
Ar 118.63 3.446
Kr 164.89 3.669
Xe 224.80 4.053
N2 95.040 3.669
O2 119.37 3.454
CO 100.17 3.760
CS2 1038.59 2.746
CCl4 1217.65 2.987
CH4 149.07 3.798
C2H4 209.33 4.329
C2H6 232.06 4.395
C3H8 301.72 4.788
C4H10 786.33 3.374
C5H12 1016.02 3.181
C6H14 1202.93 3.186
c-C6H12 1160.67 3.144
C6H6 1143.91 3.196

a boiling point, while L does not show a sudden change
but a sluggish one in the neighbourhood of the inflex-
ion point T2. L in Figure 1 indicates the liquid phase
from lower temperature to the inflexion point and the
gaseous phase from the inflexion point to higher tem-
perature.

In one dimension, the inflexion point of L does not
agree with that of H though a jump for H is graph-
ically observed from the liquid to gaseous phase at

Table 2. T1 (temperature for maximum of Cp) and boiling
temperature TB for different substances at 1 atm.

Lennard–Jones gas Exp. result [9]
Substance T1/K TB/K TB/K
Ne 19 35 27.0
Ar 45 67 87.3
Kr 56 82 119.8
Xe 72 103 165.0
N2 38 62 77.4
O2 44 67 90.2
CO 40 64 81.7
CS2 219 261 319.4
CCl4 254 300 349.7
CH4 53 79 111.7
C2H4 69 101 169.4
C2H6 75 108 184.5
C3H8 93 131 231.1
C4H10 181 223 272.7
C5H12 221 266 309.2
C6H14 253 302 341.9
c-C6H12 246 293 353.9
C6H6 244 291 353.3

the boundary of the boiling point in three-dimensional
models [7 – 9]. Assuming that the boiling tempera-
ture TB is physically equivalent to the inflexion point
of L, the boiling temperatures T2 for Lennard-Jones
substances indicate reasonable values comparing with
experimental data [10] as shown in Table 2. The be-
haviour of (dL/dT )P in the neighbourhood of the boil-
ing point corresponds to a first-order phase transition in
one dimension.
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