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In this paper, we discuss the effects of heat and mass transfer on the peristaltic flow in the presence
of an induced magnetic field. Constitutive equations of a Phan-Thien–Tanner fluid are utilized in the
mathematical description. Mathematical modelling is based upon the laws of mass, linear momentum,
energy, and concentration. Relevant equations are simplified using long wavelength and low Reynolds
number assumptions. A series solution is presented for small Weissenberg number. Variations of
emerging parameters embedded in the flow system are discussed.
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1. Introduction

During the past four decades there is an increas-
ing interest of the researchers in peristaltic flows. This
is in view of extensive applications of such flows in
physiology and industry. Many investigations [1 – 15]
here examined the peristaltic flow of viscous and non-
Newtonian fluids in symmetric/asymmetric channels
under varied assumptions of long wavelength, small
wave number, small amplitude ratio, low Reynolds
number etc.

Despite an existence of large body of literature
on the peristaltic flows, not much has been exam-
ined on the peristalsis with heat transfer characteris-
tics. Mekheimer and Abd elmaboud [16] analyzed the
magnetohydrodynamic (MHD) viscous flow and heat
transfer characteristics in a vertical annulus. The in-
teraction of peristaltic flow of a viscous fluid and heat
transfer in a vertical porous annulus region is exam-
ined by Vajravelu et al. [17]. Hayat et al. made signifi-
cant contributions on this topic in the studies [18 – 21]
for MHD flows. Srinivas and Kothandapani [22] dis-
cussed the peristaltic transport of a viscous fluid in an
asymmetric channel. Ogulu [23] studied the heat and
mass transfer effects by considering blood as a MHD
fluid.

The purpose of present attempt is to put forward
the analysis of peristaltic flows with heat and mass

transfer. Therefore, this article describes the heat and
mass transfer effects on the peristaltic flow of a MHD
non-Newtonian fluid. Constitutive equations of a Phan-
Thien–Tanner (PTT) fluid are taken into consideration.
The paper is arranged as follows. In Section 2, we
present the basic equations. The problem formulation
is given in Section 3. Series solution for small Weis-
senberg number are presented in Section 4. Section five
comprises the interpretation of graphical results.

2. Basic Equations

The constitutive equations of a PTT fluid are given
by [24, 25]

T =−pI+ τ , (1)

f (tr(τ))τ +κτ
∇ = 2µD , (2)

τ
∇ =

dτ

dt
− τ ·L∗−L · τ , (3)

L = grad V .

In the above equations V,I, p,T,µ,τ,D,κ, d/dt, tr,τ∇

and ∗ indicate the velocity, identity tensor, pressure,
Cauchy stress tensor, dynamic viscosity, an extra-
stress tensor, deformation-rate tensor, relaxation time,
material derivative, trace, Oldroyd’s upper-convected
derivative, and asterisk, respectively.
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In the linearized PTT fluid model, the function f sat-
isfies the expression

f (tr(τ)) = 1+
εκ

µ
tr(τ) . (4)

When ε = 0, then above expression holds for
a Maxwell fluid. The Maxwell relations are

∇ ·E = 0 , ∇ ·H = 0 ,

∇×E =−µe
∂H
∂ t

, ∇×H = J ,
(5)

and

J = σ (E+ µe (V×H)) . (6)

Note that the displacement current is neglected and
J,µe,σ ,E, and H denote the electric current density,
the magnetic permeability, the electrical conductivity,
the electric field, and the magnetic field, respectively.

3. Mathematical Formulation

We consider a MHD PTT fluid in a planar channel
of uniform thickness 2a. A sinusoidal wave of velocity
c propagates on the non-conducting channel walls. We
select rectangular coordinates (X̄ ,Ȳ ) such that X̄ is in
the direction of wave propagation and Ȳ transverse to
it. A constant magnetic field of strength H0 acts in the
transverse direction resulting in an induced magnetic
field H

(
h̄x̄ (X̄ ,Ȳ , t̄) , h̄ȳ (X̄ ,Ȳ , t̄) ,0

)
. The total magnetic

field is H+ (h̄x̄ (X̄ ,Ȳ , t̄) ,H0 + h̄ȳ (X̄ ,Ȳ , t̄) ,0
)
. The con-

sidered wave shape is represented by the expression

h̄(X̄ , t̄) = a+bsin

(
2π

λ
(X̄− ct̄)

)
. (7)

Here λ is the wavelength, a indicates the channel half
width, b the wave amplitude, c the wave speed, and t
the time. The velocity field for two-dimensional flow
is written as

V = [Ū(X̄ ,Ȳ , t̄),V̄ (X̄ ,Ȳ , t̄),0]. (8)

The transformations between the laboratory (X̄ ,Ȳ ) and
wave (x̄, ȳ) frames are related by the following expres-
sions:

x̄ = X̄− ct̄ , ȳ = Ȳ ,

ū(x̄ , ȳ) = Ū− c , v̄(x̄ , ȳ) = V̄ ,
(9)

in which (Ū ,V̄ ) and (ū, v̄) are the velocity components
in the laboratory and wave frames, respectively. The
fundamental equations which lead the mathematical
formulation are:
Continuity equation

∇ ·V = 0 . (10)

Equation of motion

ρ
dV
dt

= divT+ µe
(
∇×H+)×H+ (11)

= divT+ µe

[(
H+ ·∇

)
H+− ∇H+2

2

]
.

Energy equation

ρCp
dT
dt

= κ∇
2T +T ·L . (12)

Concentration equation

dC
dt

= D∇
2C +

DKT

Tm
∇

2T . (13)

Induction equation

dH+

dt
= ∇×

(
V×H+)+ 1

ς
∇

2H+. (14)

In above equations ς = σ µe is the magnetic diffusivity,
Cp specific heat at constant pressure, T the tempera-
ture, D the coefficient of mass diffusivity, Tm the mean
temperature, KT the thermal diffusion ratio, C the con-
centration, and κ the thermal conductivity.

The resulting two-dimensional equations in the
wave frame are

∂ ū
∂x

+
∂ v̄
∂ ȳ

= 0 , (15)

ρ

(
ū

∂

∂ x̄
+ v̄

∂

∂ ȳ

)
ū+

∂ p
∂x

=
∂τxx

∂x
+

∂τxy

∂ ȳ
(16)

− µe

2

(
∂H+2

∂ x̄

)
+ µe

(
h̄x̄

∂ h̄x

∂ x̄
+ h̄ȳ

∂ h̄x

∂ ȳ
+H0

∂ h̄x

∂ ȳ

)
,

ρ

(
ū

∂

∂ x̄
+ v̄

∂

∂ ȳ

)
v̄+

∂ p
∂y

=
∂τyx

∂x
+

∂τyy

∂ ȳ
(17)

− µe

2

(
∂H+2

∂ ȳ

)
+ µe

(
h̄x̄

∂ h̄ȳ

∂ x̄
+ h̄ȳ

∂ h̄ȳ

∂ ȳ
+H0

∂ h̄ȳ

∂ ȳ

)
,

ρCp

[
ū

∂

∂ x̄
+ v̄

∂

∂ ȳ

]
T̄ = κ

[
∂ 2T̄
∂ x̄2 +

∂ 2T̄
∂ ȳ2

]
(18)
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+ τxx
∂ ū
∂ x̄

+ τyy
∂ v̄
∂y

+ τxy

[
∂ v̄
∂ x̄

+
∂ ū
∂y

]
,[

ū
∂

∂ x̄
+ v̄

∂

∂ ȳ

]
C̄ = D

[
∂ 2C̄
∂ x̄2 +

∂ 2C̄
∂ ȳ2

]
(19)

+
DKT

Tm

[
∂ 2T̄
∂ x̄2 +

∂ 2T̄
∂ ȳ2

]
f τ̄xx +κ

(
ū

∂ τ̄xx

∂x
+ v̄

∂ τ̄xx

∂ ȳ
−2

∂ ū
∂x

τ̄xx−2
∂ ū
∂y

τ̄xy

)
(20)

= 2µ
∂ ū
∂x

,

f τ̄yy +κ

(
ū

∂ τ̄yy

∂x
+ v̄

∂ τ̄yy

∂ ȳ
−2

∂ v̄
∂x

τ̄yx−2
∂ v̄
∂y

τ̄yy

)
(21)

= 2µ
∂ v̄
∂y

,

f τ̄zz +κ

(
u

∂ τ̄zz

∂x
+ v

∂ τ̄zz

∂ ȳ

)
= 0 , (22)

f τ̄xy +κ

(
u

∂ τ̄xy

∂x
+ v

∂ τ̄xy

∂ ȳ
− ∂ v̄

∂x
τ̄xx (23)

− ∂ v̄
∂y

τ̄xy−
∂ ū
∂x

τ̄xy−
∂ ū
∂y

τ̄yy

)
= µ

(
∂ ū
∂y

+
∂ v̄
∂x

)
,

f = 1+
εκ

µ
(τ̄xx + τ̄xy + τ̄zz) . (24)

In order to proceed with dimensionless variables, we
introduce

We =
kc
a

, x =
x̄
λ

, y =
ȳ
a

, t =
ct
λ

, p =
a2 p̄
cλ µ

,

M2 = ReS2Rm , δ =
a
λ

, τi j =
aτ̄i j

µc
(for i, j = 1,2,3) ,

u =
ū
c

, v =
v̄
c

, Re =
caρ

µ
, Rm = σ µeac,

S =
H0

c

√
µe

ρ
, φ =

φ̄

H0a
, h̄x̄ = φ̄ȳ , h̄ȳ =−φ̄x̄ ,

pm = p+
1
2

Reδ
µe (H+)2

ρc2 , E =
−E

cH0µe
,

E1 =
c2

CpT1
, Pr =

µCp

κ
, θtemp =

T̄
T1

, φcon =
C̄
C1

,

Sc =
µ

ρD
, Sr =

ρT0DKT

µTmC1
, Br = E1Pr , (25)

in which E1,Pr,Sc,Sr,δ ,We,Re,Rm,S, and M are
Eckert, Prandtl, Schmidt, Soret, wave, Weissenberg,
Reynolds, magnetic Reynolds, Stommer, and Hartman
numbers, respectively. Here pm is the total pressure
which is a sum of ordinary and magnetic pressures, E

is the electric field strength, Ψ is the stream function,
and φ is the magnetic force function. Moreover T1 and
C1 are temperature and concentration at y = h, respec-
tively.

Equation (8) in dimensionless variables then can be
written as

h =
h̄
a

= 1+α sin(2πx) , (26)

in which the amplitude ratio α is equal to b/a. Writing

u =
∂Ψ

∂y
, v =−δ

∂Ψ

∂x
,

hx =
∂φ

∂y
, hy =−δ

∂φ

∂x
,

(27)

and using long wavelength approach, (16) is automati-
cally satisfied, and (15) – (25) in their reduced form are
given by

∂ p
∂x

=
∂τxy

∂y
+Re S2 ∂ 2φ

∂y2 , (28)

∂ p
∂y

= 0 , (29)

∂ 2θtemp

∂y2 +Brψyyτxy = 0 , (30)

∂ 2φcon

∂y2 =−Sc Sr
∂ 2θtemp

∂y2 , (31)

E =
∂Ψ

∂y
+

1
Rm

∂ 2φ

∂y2 , (32)

f τxx = 2We
∂ 2Ψ

∂y2 τxy , (33)

f τyy = 0 = f τzz = 0 , (34)

f τxy =−We
∂ 2Ψ

∂y2 τyy +
∂ 2Ψ

∂y2 , (35)

and (29) shows that p 6= p(y) and therefore p = p(x).
The dimensionless boundary conditions are

Ψ = 0 ,
∂ 2Ψ

∂y2 = 0 ,
∂φ

∂y
= 0 ,

∂φcon

∂y
= 0 ,

∂θtemp

∂y
= 0 at y = 0 ,

Ψ = F ,
∂Ψ

∂y
=−1 , φ = 0 , θtemp = 1 ,

∂

∂y
φcon = 1 at y = h ,

(36)

F =
∫ h

0

∂Ψ

∂y
dy . (37)
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By (34), we have τyy = τzz = 0 and thus the trace of
the stress tensor becomes τxx. Integration of (28) after
using (29) subjected to the boundary condition τxy = 0
at y = 0 (the symmetry line) gives

τxy = y
dp
dx
−M2 (Ey−Ψ) . (38)

From (34) and (35), one obtains

τxx = 2Weτ
2
xy . (39)

Due to (27), (34), and (39), we have

∂ 2Ψ

∂y2 = τxy +2εWe2
τ

3
xy . (40)

Upon making use of (38) into (40), one arrives at

∂ 2Ψ

∂y2 =y
dp
dx
−M2 (Ey−Ψ)

+2εWe2
(

y
dp
dx
−M2 (Ey−Ψ)

)3

.

(41)

4. Perturbation Solution

For a perturbation solution, the flow quantities in
terms of We can be written as follows:

Ψ = Ψ0 +We2
Ψ1 +O(We)4 ,

φ = φ0 +We2
φ1 +O(We)4 ,

(42)

F = F0 +We2F1 +O(We)4 ,

θtem = θ0temp +We2
θ1temp +O(We)4 ,

(43)

p = p0 +We2 p1 +O(We)4 ,

φcon = φ0con +We2
φ1con +O(We)4 .

(44)

Invoking above expressions into (30), (31), (36), and
(41), comparing terms of like powers of We2, then
solving the resulting zeroth- and first-order system and
using

F0 = F−We2F1 , (45)

we obtain analytic expressions for stream function and
pressure gradient.

Ψ =
(cosh(3My)− sinh(3My))(L1 (y)+L2 (y))

(1+hM +(−1+hM)(cosh(2Mh)+ sinh(2Mh)))

·

+We2[{L3 (y)+L4 (y)−L5 (y)−L6 (y)+L7 (y)−L8 (y) −L9 (y)+L10 (y)

+L11 (y)+L12 (y)+L13 (y)+L14 (y)}{(F +h)3 M4ε (cosh(3My)+ sinh(3My))}]
4(1+hM +(−1+hM)(cosh(2Mh)+ sinh(2Mh)))4 ,

(46)

dp
dx

= −M2 ((F−hE)M cosh(Mh)+(1+E)sinh(Mh))
hM cosh(Mh)− sinh(Mh)

·

+We2
[
M2
{

2L(1+hM +(−1+hM)C8)
4

+2(F +h)3 M5ε (cosh(4Mh)+ sinh(4Mh))(12hM−8sinh(2Mh)+ sinh(4Mh))
}]

2(1+hM +(−1+hM)C8)
4 .

(47)

Utilizing expressions of Ψ in (30) – (32), one can
obtain the purterbed expressions of θtem, φcon and
φ . Here the involved Ci (i = 1 – 8) and Li (i =
1 – 14) are obtained by simple algebraic computa-
tions.

The heat transfer coefficient Z at the wall, the di-
mensionless axial induced magnetic field hx, current
density Jz, pressure rise ∆Pλ , and friction force Fλ are
defined as

hx =
∂φ

∂y
, Jz =−∂ 2φ

∂y2 , ∆Pλ =
∫ 1

0

dp
dx

dx ,

Fλ =
∫ 1

0
h

(
− dp

dx

)
dx , Z = hxθytem (h) .

(48)

5. Discussion of Graphs

This section discusses the influence of various pa-
rameters (i.e Brinkman number Br, extensional param-
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Fig. 1. (a) Temperature distribution θtemp versus y for E = 1,M = 2,ε = 0.3,α = 0.6,θ = 1.5,We = 0.01, and x = 0.1. (b)
Temperature distribution θtemp versus y for E = 1,M = 5.2,Br = 0.1,α = 0.6,θ = 2,We = 0.08, and x = 0.1. (c) Temperature
distribution θtemp versus y for E = 1,M = 5.2,Br = 0.1,α = 0.6,θ = 2,ε = 0.2, and x = 0.1. (d) Temperature distribution
θtemp versus y for M = 2,Br = 0.3,α = 0.6,θ = 1.5,ε = 0.3,x = 0.1, and We = 0.03. (e) Temperature distribution θtemp
versus y for M = 2,α = 0.2,Br = 0.1,ε = 0.3,x = 0.1,We = 0.03, and E = 1.

eter ε , Weissenberg number We, and flow rate θ , am-
plitude ratio α , Schmidt number Sc, Hartman number
M, and magnetic Reynolds number Rm) involved on
the temperature θtemp, heat transfer coefficient Z, mass

concentration φcon, magnetic force function φ , current
density Jz, and axial induced magnetic field hx. For
this purpose, Figures 1 – 3 are sketched. Plots for the
stream function ψ , pressure gradient dp/dx, pressure
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Fig. 2. (a) Heat coefficient Z versus x for M = 2.5,α = 0.2,θ = 1.5,ε = 0.3,We = 0.03, and E = 1. (b) Heat coefficient Z
versus x for M = 2,α = 0.2,θ = 1.5,Br = 1,We = 0.03, and E = 1. (c) Heat coefficient Z versus x for M = 1,α = 0.2,θ =
2,Br = 0.1,Br = 4,ε = 0.3, and E = 1. (d) Heat coefficient Z versus x for M = 1,α = 0.2,θ = 2,Br = 4,We = 0.03,Br =
4,ε = 0.3, and E = 5. (e) Heat coefficient Z versus y for M = 1,α = 0.3,θ = 4.5,Br = 0.3,Br = 4,ε = 0.3, and We = 0.05.

rise ∆Pλ , and frictional forces Fλ are displayed for the
effects of Hartmann number M.

The variation of Br, ε , We, θ , and M on the
temperature distribution is shown in Figure 1. One
sees that the dimensionless temperature profiles are

almost parabolic in nature. The Brinkman number
demonstrates the role of viscous dissipation. The
temperature distribution is an increasing function
of the Brinkman number Br, extensional parame-
ter ε , Weissenberg number We, and flow rate θ
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Fig. 3. (a) Concentration distribution φcon versus y for M = 3,α = 0.2,θ = 2.5,x = 0.3,Sc = 3,Sr = 3,ε = 0.3,We = 0.03,
and E = 1. (b) Concentration distribution φcon versus y for M = 3,α = 0.2,θ = 2.5,x = 0.3,Br = 0.1, textSr = 3,ε =
0.3,We = 0.03, and E = 1. (c) Concentration distribution φcon versus y for M = 3,α = 0.2,Sc = 3,x = 0.3,Br = 0.1,Sr =
3,ε = 0.3,We = 0.03, and E = 1. (d) Concentration distribution φcon versus y for M = 3,θ = 2,Sc = 3,x = 0.1,Br = 0.1,Sr =
3,ε = 0.3,α = 0.6, and E = 1.

while it decreases when the Hartman number M in-
creases.

Figure 2 explains the variation of different param-
eters on the heat transfer coefficient Z. Figures 2a – d
show that the absolute value of heat transfer coefficient
increases by increasing Br, ε,We,α , and E.

Figure 3 elucidates the concentration distribution of
the fluid for the different parameters. The obtained
results agree well with the observations in biological
practice. It is obvious that transport of nutrients from
blood takes place by the process of diffusion out of
the blood vessels to the surrounding cells and tissues.
A higher concentration at walls than along the axis is
the general observation of the set of Figures 3a – d.

Moreover these figures show that with an increase
in Brinkman number Br, Schmidt number Sc, Weis-
senberg number We, and flow rate θ , the concentration
field decreases.

6. Concluding Remarks

The effects of heat and mass transfer on the peri-
staltic motion of a magnetohydrodynamic Phan-Thien-
Tanner fluid are analysed. The flow quantities of in-
terest have been computed by regular perturbation
method. Explicit attension is paid to temperature and
concentration distribution. The main conclusions are
summarized as follows: The temperature distribution
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increases with increasing values of Br,ε,We, and θ at
the centre of the channel. The concentration distribu-

tion has an opposite behaviour to the temperature dis-
tribution for Br,ε,We, and θ .
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