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A modified mapping method and new ansätz form are used to derive three families of variable sep-
aration solutions with two arbitrary functions of the (2 + 1)-dimensional Nizhnik–Novikov–Veselov
equation in water waves. By selecting appropriate functions in the variable separation solution,
we discuss interaction behaviours among dromion-pair and dromion-like peakon-pair and dromion-
like semifoldon-pair. The analysis results exhibit that the interaction behaviours between dromion-
pair and dromion-like peakon-pair, dromion-pair and semifoldon-pair, dromion-like peakon-pair and
semifoldon-pair are all incomplete elastic, and there exists a phase shift. The interaction behaviour
between two dromion-like semifoldon-pairs is completely elastic, and no phase shift appears after
interaction. Moreover, during the interactions between dromion-pair and semifoldon-pair, dromion-
like peakon-pair and semifoldon-pair, and between two dromion-like semifoldon-pairs, there all exist
a multi-valued semifoldon-pair.
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1. Introduction

The dynamical behaviours of the finite amplitude
waves on the free surface of an irrotational fluid has
attracted tremendous attention over the last 40 years.
Shallow water waves and a great deal of long wave
phenomena are commonly studied by various models
of nonlinear partial differential equations (PDEs). In
linear wave theory, the Fourier analysis and the vari-
able separation approach (VSA) are two most univer-
sal and powerful means to study the linear PDEs. In
nonlinear domain, the counterparts (the celebrated in-
verse scattering method [1] and VSA [2 – 12]) have
also developed and play an important role to ana-
lyze nonlinear wave dynamics. Many VSAs in non-
linear field have also been established, such as the
multilinear VSA [2, 3] and the VSA based on map-
ping method [4 – 6], and so on. Moreover, many direct
methods based on different mapping equations, which
used to obtain travelling wave solutions, were extended
to realize the variable separation of nonlinear PDEs,

including the improved projective approach [7 – 9], the
q-deformed hyperbolic functions method [10], and the
projective Ricatti equation method (PREM) [11, 12].

Abundant localized coherent structures have been
investigated based on various variable separation solu-
tions [2 – 12]. Moreover, besides single-valued local-
ized structures such as dromions, peakons, and com-
pactons etc., many multi-valued structures including
foldons and semi-foldons have also been a surge of in-
terest due to their extensive applications in very com-
plicated folded phenomena such as the folded pro-
tein [13], folded brain and skin surfaces, and many
other kinds of folded biologic systems [14]. Many
authors have also discussed interaction behaviours
among these localized coherent structures. For ex-
ample, the completely elastic interactions between
dromions [2] and between dromion-solitoffs [8] have
been reported. The incompletely elastic interactions
between peakon and semifoldon [12] has been inves-
tigated. The completely inelastic interactions between
peakon [3] and between semifoldons [10]. However,
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the interactions among some multi-soliton structures
of dromions, peakons, and foldons were little reported
in previous literature.

Naturally, some significant and interesting issues
arise: Can other mapping equation be used to ob-
tain variable separation solutions of some (2 + 1)-
dimensional nonlinear physics systems? Based on
these variable separation solutions, can we dis-
cuss some new dynamical behaviours among semi-
structures? In order to answer these issues, we
study the following well-known (2 + 1)-dimensional
Nizhnik–Novikov–Veselov (NNV) equation

ut +auxxx +buyyy−3a(uv)x−3b(uw)y = 0 ,

ux = vy , uy = wx ,
(1)

where a and b are arbitrary constants. This system
is simply a known isotropic Lax extension of the
well-known (1 + 1)-dimensional shallow water-wave
Korteweg–de Vries (KdV) model [15]. Some types
of the soliton solutions have been studied by many
authors. For instance, Boiti et al. [16] solved the
NNV equation via the inverse scattering transforma-
tion. Tagami [17] obtained the soliton-like solutions of
(1) by means of the Bäklund transformation. Ohta [18]
obtained the Pfaffian solutions for (1). We also dis-
cussed some novel localized coherent structures about
multi-valued functions [19, 20].

2. The Modified Mapping Method

Let us consider a given nonlinear PDE with inde-
pendent variables x = (x0 = t,x1,x2,x3, ...,xm) and de-
pendent variable u,

L(u,ut ,uxi ,uxix j , · · ·) = 0, (2)

where L is in general a polynomial function of its argu-
ment, and the subscripts denote the partial derivatives.

The basic idea of the mapping method is to seek for
its ansätz

u = a0(x)+
n

∑
i=1

{
ai(x)φ i[q(x)]+

bi(x)
φ i[q(x)]

(3)

+ ci(x)φ i−1[q(x)]
√
{Aφ [q(x)]−C}{Bφ [q(x)]−D}

}
,

where ai,bi,ci, and q are arbitrary functions of {x} to
be determined, n is fixed by balancing the linear term
of the highest order with the nonlinear term in (2), and

φ satisfies a mapping equation [4 – 9]. Here the super-
script i indicates the power of φ , and A,B,C, and D are
arbitrary constants.

Note that many mapping equations for φ have been
used, such as the Riccati equation φ ′ = l0 + φ 2 (l0
is a constant and the prime denotes differentiation
with respect to q) [4 – 6], φ ′ = σφ + φ 2 (σ is a con-
stant) [7 – 9], and φ ′ = l1 + l2φ 2 (l1 and l2 are free con-
stants) [19]. Here we seek for the solution of the given
nonlinear PDE (2) with new mapping equation [21, 22]

φ
′ = (Aφ −C)(Bφ −D) , (4)

which is known to possess the general solution

φ =
Dexp[(BC−AD)q]−C exp[C1(AD−BC)]
Bexp[(BC−AD)q]−Aexp[C1(AD−BC)]

. (5)

Here C1 is an integration constant.
To determined u explicitly, we take the following

three steps:
Step 1: Determine n by balancing the highest non-

linear terms and the highest-order partial differential
terms in the given nonlinear PDE (2).

Step 2: Substituting (3) along with (4) into (2)
yields a set of polynomials for φ i

√
(Aφ −C)(Bφ −D).

Eliminating all the coefficients of the powers of
φ i
√

(Aφ −C)(Bφ −D) yields a series of partial differ-
ential equations, from which the parameters ai,bi,ci,
and q are explicitly determined.

Step 3: By substituting ai,bi,ci, q, and (5) into (3),
one can obtain possible solutions of (2).

3. Variable Separation Solutions for the
(2+++ 1)-Dimensional NNV Equation

Along with the modified mapping method in Sec-
tion 2, by balancing the highest-order derivative terms
with the nonlinear terms in (1), we suppose that it has
the following formal solutions:

u =
a−2

φ 2 +
a−1

φ
+a0 +a1φ +a2φ

2 (6)

+a3

√
(Aφ −C)(Bφ −D)+a4φ

√
(Aφ −C)(Bφ −D) ,

v =
b−2

φ 2 +
b−1

φ
+b0 +b1φ +b2φ

2

+b3

√
(Aφ −C)(Bφ −D)+b4φ

√
(Aφ −C)(Bφ −D) ,

w =
c−2

φ 2 +
c−1

φ
+ c0 + c1φ + c2φ

2

+ c3

√
(Aφ −C)(Bφ −D)+ c4φ

√
(Aφ −C)(Bφ −D) ,
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where ai,bi,ci (i = −2,−1, . . .,4) are all arbitrary
functions of {x,y, t}, φ satisfies (5), and q ≡ q(x,y, t).
Inserting (6) into (1), selecting the variable separation
ansatz

q = χ(x, t)+ψ(y, t), (7)

and eliminating all the coefficients of the powers of
φ i
√

(Aφ −C)(Bφ −D), one gets a set of PDEs, from
which we have three kinds of solutions, namely

Solution 1

a−1 = a−2 = a3 = a4 = 0 , a0 =−2A2D2
χxψy ,

a1 =−2AB(AD+BC)χxψy , a2 = 2A2B2
χxψy ,

b−1 = b−2 = b3 = b4 = 0 ,

b0 =
aχxxx + χt −2aA2D2χ3

x

3aχx
,

b1 =−2AB[(AD+BC)χ
2
x −χxx] ,

b2 = 2A2B2
χ

2
x ,

c−1 = c−2 = c3 = c4 = 0 ,

c0 =
bψyyy +ψt −2bA2D2ψ3

y

3bψy
,

c1 =−2AB[(AD+BC)ψ2
y −ψyy] ,

c2 = 2A2B2
ψ

2
y ,

(8)

Solution 2

a−1 = a−2 = a1 = a3 = 0 ,

a0 =−A2D2
χxψy , a2 = A2B2

χxψy ,

a4 = AB
√

ABχxψy , AD+BC = 0 ,

b−1 = b−2 = 0 , b0 =
aχxxx + χt −2aA2D2χ3

x

3aχx
,

b1 = ABχxx , b2 = A2B2
χ

2
x ,

b3 =
√

ABχxx , b4 = AB
√

ABχ
2
x ,

c−1 = c−2 = 0 ,

c0 =
bψyyy +ψt −2bA2D2ψ3

y

3bψy
,

c1 = ABψyy , c2 = A2B2
ψ

2
y ,

c3 =
√

ABψyy , c4 = AB
√

ABψ
2
y ,

(9)

and Solution 3

a−2 = 2A2D4
χxψy/B2 , a0 =−4A2D2

χxψy ,

a2 = 2A2B2
χxψy ,

b−1 =
2AD2χxx

B
, b−2 =

2A2D4χ2
x

B2 ,

b0 =
aχxxx + χt +4aA2D2χ3

x

3aχx
,

b1 = 2ABχxx , b2 = 2A2B2
χ

2
x ,

c−1 =
2AD2ψyy

B
, c−2 =

2A2D4ψ2
y

B2 ,

c0 =
bψyyy +ψt +4bA2D2ψ3

y

3bψy
,

c1 = 2ABψyy , c2 = 2A2B2
ψ

2
y ,

a−1 = a1 = a3 = a4 = b3 = b4 = c3 = c4 = 0 ,

AD+BC = 0 ,

(10)

where χ and ψ are arbitrary functions of {x, t} and
{y, t}, respectively.

Therefore, the variable separation solution of the
(2+1)-dimensional NNV equation reads

Family 1

u = −2A2D2
χxψy−2AB(AD+BC)χxψy

Θ

Λ

+2A2B2
χxψy

(
Θ

Λ

)2

, (11)

v =
aχxxx + χt −2aA2D2χ3

x

3aχx

−2AB[(AD+BC)χ
2
x −χxx]

Θ

Λ

+2A2B2
χ

2
x

(
Θ

Λ

)2

, (12)

w =
bψyyy +ψt −2bA2D2ψ3

y

3bψy

−2AB[(AD+BC)ψ2
y −ψyy]

Θ

Λ

+2A2B2
ψ

2
y

(
Θ

Λ

)2

, (13)

Family 2

u = −A2D2
χxψy +A2D2

χxψy
Γ+

Γ−

·

[
Γ+

Γ−
+

√(
Γ+

Γ−
+1

)(
Γ+

Γ−
−1

)]
, (14)
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v =
aχxxx + χt −2aA2D2χ3

x

3aχx

−ADχxx

[
Γ+

Γ−
−

√(
Γ+

Γ−
+1

)(
Γ+

Γ−
−1

)]
+A2D2

χ
2
x

Γ+

Γ−

·

[
Γ+

Γ−
+

√(
Γ+

Γ−
+1

)(
Γ+

Γ−
−1

)]
, (15)

w =
bψyyy +ψt +4bA2D2ψ3

y

3bψy

−ADψyy

[
Γ+

Γ−
−

√(
Γ+

Γ−
+1

)(
Γ+

Γ−
−1

)]
+A2D2

ψ
2
y

Γ+

Γ−

·

[
Γ+

Γ−
+

√(
Γ+

Γ−
+1

)(
Γ+

Γ−
−1

)]
, (16)

Family 3

u = −4A2D2
χxψy

+2A2D2
χxψy

[(
Γ+

Γ−

)2

+
(

Γ−
Γ+

)2
]

, (17)

v =
aχxxx + χt +4aA2D2χ3

x

3aχx

−2ADχxx

[
Γ+

Γ−
+

Γ−
Γ+

]
+2A2D2

χ
2
x

[(
Γ+

Γ−

)2

+
(

Γ−
Γ+

)2
]

, (18)

w =
bψyyy +ψt +4bA2D2ψ3

y

3bψy

−2ADψyy

[
Γ+

Γ−
+

Γ−
Γ+

]
+2A2D2

ψ
2
y

[(
Γ+

Γ−

)2

+
(

Γ−
Γ+

)2
]

, (19)

where Θ = Dexp[(BC−AD)(χ + ψ)]−C exp[C1(AD
−BC)], Λ = Bexp[(BC−AD)(χ +ψ)]−Aexp[C1(AD
−BC)], Γ± = Aexp(2ADC1)±Bexp[−2AD(χ +ψ)].

4. Interaction Behaviours Among Special
Soliton-Pairs

Based on the quantities u,v, and w expressed by
(11) – (19), we can obtain many rich coherent localized
structures such as nonpropagating solitons, dromions,
peakons, compactons, foldons, instantons, and ring
solitons discussed in [2 – 12]. Here we omit them, and
pay attention to interaction behaviours between special
soliton-pairs for the physical quantity u expressed by
(14).

4.1. Localized Structures Constructed by Multi-Valued
Functions

We discuss the three special combined soliton-pair
structures, i.e. dromion-pair and dromion-like peakon-
pair and dromion-like semifoldon-pair by introducing
multi-valued function as

χx =
N

∑
i=1

κi(ζ −dit) , x = ζ +
N

∑
i=1

ηi(ζ −dit) , (20)

where di (i = 1,2, . . . ,N) are arbitrary constants, κi

and ηi are localized excitations with the properties
κi(±∞) = 0, ηi(±∞) = consts. From (20), one can
know that ζ may be a multi-valued function in some
suitable regions of x by choosing the functions ηi ap-
propriately. Therefore, the function px, which is obvi-
ously an interaction solution of N localized excitations
due to the property ζ |x→∞→∞, may be a multi-valued
function of x in these areas, though it is a single-valued
function of ζ . Actually, most of the known multi-loop
solutions are special cases of (20).

Specifically, χ and ψ are chosen as

χx = 0.5sech2(ζ −0.5t) ,
x = ζ −E tanh(ζ −0.5t) ,

(21)

ψ = tanh(0.5y−5)−0.55tanh(0.5y+5) , (22)

where E is a characteristic parameter, which deter-
mines the localized structure. Figure 1 describes these
special localized structures, i.e. special dromion-pair
(a dipole type dromion with one up and one down
bounded peaks), dromion-like peakon-pair, dromion-
like semifoldon-pair with E = 0.2,1,1.5, respectively.
They localize as bell-pair in the y-direction and bell-
like soliton, peakon, and loop soliton in the x-direction,
respectively.
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Fig. 1. Sectional views of special soliton-pair at (a) x = 0 and (b) y = 8 for parameters A = C1 = 1,B = 2,C = 0.25,D =−0.5
at time t = 15.
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Fig. 2. Incompletely elastic interaction between special dromion-pair and dromion-like peakon-pair at time (a) t = −15, (b)
t =−1, and (c) t = 15. (d) Sectional views of (a) – (c) at y =−8,8 when t =−15 (solid line), t =−1 (dash line), and t = 15
(circle). The parameters are chosen as A = C1 = 1,B = 2,C = 0.25,D =−0.5,E = 1,F = 0.2.

4.2. Incompletely Elastic Interaction Among Solitons

Let us study interaction behaviours among these
special solitons produced by the multi-valued func-
tions above. If we take the specific choice N = 2,d1 =
0.5, and d2 =−0.5 in (20), one has

χx = 0.7sech2(ζ −0.5t)+0.9sech2(ζ +0.5t) ,

x = ζ −E tanh(ζ −0.5t)−F tanh(ζ +0.5t) , (23)

where E and F are characteristic parameters, which de-
termine the types of interaction. Further, ψ is given by
(21). From the expression u (14), one can obtain two
solitons, one is moving along the positive x-direction
and another is moving along the negative x-direction.
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Fig. 3. Incompletely elastic interaction between dromion-pair and semifoldon-pair at time (a) t = −15, (b) t = −1, and (c)
t = 15. (d) Sectional views of (a) – (c) at y = −8,8 when t = −15 (solid line), t = −1 (dash line), and t = 15 (circle). The
parameters are chosen as A = C1 = 1,B = 2,C = 0.25,D =−0.5,E = 1.5,F = 0.2.
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Fig. 4. Incompletely elastic interaction between peakon-pair and semifoldon-pair at time (a) t = −15, (b) t = −1, and (c)
t = 15. (d) Sectional views of (a) – (c) at y = −8,8 when t = −15 (solid line), t = −1 (dash line), and t = 15 (circle). The
parameters are chosen as A = C1 = 1,B = 2,C = 0.25,D =−0.5,E = 1.5,F = 1.
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Fig. 5. Completely elastic interaction between semifoldon-pairs at time (a) t =−15, (b) t =−1, and (c) t = 15. (d) Sectional
views of (a) – (c) at y = −8,8 when t = −15 (solid line), t = −1 (dash line), and t = 15 (circle). The parameters are chosen
as A = C1 = 1,B = 2,C = 0.25,D =−0.5,E = F = 1.5.

The interactions between solitons may be regarded
as elastic or inelastic. It is called completely elastic, if
the amplitude, velocity, and wave shape of solitons do
not changed after their interaction. Otherwise, the in-
teractions between solitons are inelastic (incompletely
elastic and completely inelastic). Like the collisions
between two classical particles, a collision in which
solitons stick together is sometimes called completely
inelastic.

If we take the specific values E = 1,F = 0.2 in
(23), then we can successfully construct the interac-
tion between a dromion-like peakon-pair and a spe-
cial dromion-pair, of which possess a phase shift for
the physical quantity u depicted in Figure 2. From
Figure 2, one can find that the interaction may ex-
hibit a incompletely elastic behaviour since solitons’
shapes and amplitudes are not completely maintained
any more after interaction, and there exists a peakon-
pair (dash-line in Fig. 2d) in the process of their col-
lision. The phase shift can be observed. Prior to in-
teraction, the velocities of the smaller dromion-pair
and the lager dromion-like peakon-pair have set to be

{v01x = d1 = 0.5} and {v02x = d2 = −0.5}, respec-
tively. The final velocities v1x and v2x of the moving
solitons also completely maintain their initial veloci-
ties {v1x = v01x = 0.5} and {v2x = v02x =−0.5}. How-
ever, two solitons do not exchange the corresponding
positions and shift some distances.

In the following, we discuss the interaction between
a dromion-like semifoldon-pair and a special dromion-
pair for the specific values E = 1.5,F = 0.2 in (23).
This interaction is also a incompletely elastic be-
haviour since solitons’ shapes and amplitudes are not
completely maintained any more after interaction (c.f.
Fig. 3). After interaction, the dromion-pair and the
dromion-like semifoldon-pair maintain their initial ve-
locities {v1x = v01x = 0.5} and {v2x = v02x = −0.5},
respectively. From Figure 3d we learn that the two soli-
tons do not exchange the corresponding positions and
shift some distances. Note that there exists a multi-
valued semifoldon-pair (dash-line in Fig. 3d) in the
process of their collision, which is different from the
case of the interaction between dromion-like peakon-
pair and special dromion-pair.
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Besides the two kind of interactions above, we can
also investigate the interaction between a dromion-
like semifoldon-pair and a dromion-like peakon-pair
by choosing parameters E = 1.5,F = 1 in (23). This in-
teraction shows also an incompletely elastic behaviour
since solitons’ shapes and amplitudes are not com-
pletely maintained any more after interaction, and
there exists a phase shift because the two solitons do
not exchange the corresponding positions. In the pro-
cess of their collision, a multi-valued semifoldon-pair
(dash-line in Fig. 4d) also appears, and the two solitons
also preserve their initial velocities after interaction.

4.3. Completely Elastic Interaction Among Solitons

It is interesting to note that although the above
selections are all incompletely elastic interaction be-
haviours, we can also construct localized coher-
ent structures with completely elastic interaction be-
haviours by appropriately selecting the values of E and
F in (23).

If we select the specific values E = F = 1.5 in
(23), then we can successfully construct the interac-
tion between two dromion-like semifoldon-pairs for
the physical quantity u depicted in Figure 5. From Fig-
ure 5, one can find that the interaction among them
may exhibit a completely elastic behaviour since soli-
tons’ shapes, amplitudes, and velocities are completely
maintained after interaction. The phase shift is not
observed, and two solitons exchange the correspond-
ing positions. Similar to the two kinds of interac-
tions in Figures 3 and 4, there exists a multi-valued
semifoldon-pair (dash-line in Fig. Figure 5d) during
their collision.

5. Summary and Discussion

In this paper, we obtained three families of vari-
able separation solutions with two arbitrary functions
of the (2 + 1)-dimensional Nizhnik–Novikov–Veselov
equation in water waves, and discussed interaction be-
haviours among some special soliton-pairs. The main
points are as follows:

• A new mapping equation and new ansätz form are
used.

Besides mapping equations in [4 – 9, 19], a new
mapping equation was utilized to obtain variable sepa-
ration solutions of some (2+1)-dimensional nonlinear
physics systems. As an example, we applied it to the
(2 + 1)-dimensional NNV equation, and derived three
families of variable separation solutions with two arbi-
trary functions. Moreover, the ansätz form (3) is more
general than those in [4 – 9, 19].
• Elastic interactions of special solitons are investi-
gated.

By selecting appropriate functions in the vari-
able separation solution, we discussed interac-
tion behaviours among special solitons, constructed
by multi-valued functions, including the dromion-
pair and dromion-like peakon-pair and dromion-
like semifoldon-pair. The analysis results exhibit
that the interaction behaviours between dromion-
pair and dromion-like peakon-pair, dromion-pair
and semifoldon-pair, dromion-like peakon-pair and
semifoldon-pair are all incomplete elastic, and there
exists a phase shift. The interaction behaviour be-
tween two dromion-like semifoldon-pairs is com-
pletely elastic, and no phase shift appears after
interaction. Moreover, during the interactions be-
tween dromion-pair and semifoldon-pair, dromion-like
peakon-pair and semifoldon-pair, and between two
dromion-like semifoldon-pairs, there all exists a multi-
valued semifoldon-pair.

Of course, the method presented in this paper can
be further extended to (1+1)-dimensional and (3+1)-
dimensional nonlinear systems.
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