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Unsteady motions of Oldroyd-B fluids between two parallel walls perpendicular to a plate that
applies two types of shears to the fluid are studied using integral transforms. Exact solutions are
obtained both for velocity and non-trivial shear stresses. They are presented in simple forms as sums
of steady-state and transient solutions and can easily be particularized to give the similar solutions for
Maxwell, second-grade and Newtonian fluids. Known solutions for the motion over an infinite plate,
applying the same shears to the fluid, are recovered as limiting cases of general solutions. Finally, the
influence of side walls on the fluid motion, the distance between walls for which their presence can
be neglected, and the required time to reach the steady-state are graphically determined.
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1. Introduction

The non-Newtonian fluids are important due to their
applications in various branches of industry and tech-
nology, and their study presents a special challenge to
engineers, physicists, and mathematicians. Motions of
these fluids due to an oscillating plate have been ex-
tensively studied in the literature [1 – 6]. However, the
first closed-form expressions for starting solutions cor-
responding to the motion of Newtonian fluids caused
by cosine or sine oscillations of the plate have been
late enough obtained [7]. These solutions have been
extended to non-Newtonian fluids by different au-
thors [8 – 10]. Furthermore, the problem has been ex-
tended to fluid motions between two side walls perpen-
dicular to an oscillating plate [11].

Over the last decade, the interest of researchers in
problems with shear stress boundary conditions (in-
stead of velocity boundary conditions) has signifi-
cantly increased. This is very important as in some
problems what is specified is the force applied on the
boundary. Further, the ‘no slip’ boundary condition
may not be necessarily applicable to flows of poly-
meric fluids that can slip or slide on the boundary.
In general, the slip velocity depends on the shear and
mostly the slip conditions are developed under the as-
sumption that they depend on the shear stress. Thus,

shear stress boundary conditions are particularly mean-
ingful [12, 13]. The first exact solutions for motion of
second-grade fluids over an infinite plate that applies
a constant shear stress to the fluid seem to be those of
Bandelli et al. [14] and Erdogan [15]. In [16], Fetecau
et al. studied the walls effect on the motion of a vis-
cous fluid induced by the bottom plate, applying the
oscillating shears to the fluid. Further the motions of
the fluids between two parallel walls perpendicular to
a plate that applies a constant or an oscillating shear
to the fluid can be seen in [17 – 27]. Recently, Shahid
et al. [28] found some exact solutions for motions of
Oldroyd-B fluids over an infinite plate that applies os-
cillating shear stresses to the fluid.

The aim of this work is to extend the last results to
motions between parallel walls. More exactly, we es-
tablish exact solutions for the motion of an Oldroyd-B
fluid between two side walls perpendicular to an infi-
nite plate that applies two types of shears to the fluid.
These solutions, presented as a sum between steady-
state and transient solutions, satisfy all imposed initial
and boundary conditions and reduce as limiting cases
to previous solutions. Moreover, they describe the mo-
tion of the fluid some time after its initiation. After that
time, when the transients disappear, the fluid flows ac-
cording to the steady-state solutions that are periodic
in time and independent of the initial conditions. The
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influence of the walls on the fluid motion and the re-
quired time to reach the steady-state are graphically
determined.

2. Governing Equations

The Cauchy stress tensor T for an incompressible
Oldroyd-B fluid is related to the fluid motion in the
following manner [29]:

T =−pI+S , (1a)

S+λ (Ṡ−LS−SLT) =

µ
(
A+λr(Ȧ−LA−ALT)

)
,

(1b)

where −pI is the indeterminate part of the stress due
to the constraint of incompressibility, S is the extra-
stress tensor, λ and λr are the relaxation and retarda-
tion times, L is the velocity gradient, µ is the dynamic
viscosity, A = L + LT is the first Rivlin–Ericksen ten-
sor, and the superposed dot denotes the material time
derivative. In the following, we shall seek a velocity
field v and an extra-stress S of the form

v = v(y,z, t) = u(y,z, t)i , (2a)

S = S(y,z, t) , (2b)

where i is the unit vector along the x-direction of the
Cartesian coordinate system x,y, and z. For such flows,
the constraint of incompressibility is automatically sat-
isfied. If the fluid is at rest at the moment t = 0, then

v(y,z,0) = 0 , S(y,z,0) = 0 , (3)

and the constitutive equation (1b) lead to the meaning-
ful relations(

1+λ
∂

∂ t

)
τ1(y,z, t) = µ

(
1+λr

∂

∂ t

)
∂u(y,z, t)

∂y
,(

1+λ
∂

∂ t

)
τ2(y,z, t) = µ

(
1+λr

∂

∂ t

)
∂u(y,z, t)

∂ z
,

(4)

where τ1(y,z, t) = Sxy(y,z, t) and τ2(y,z, t) = Sxz(y,z, t)
are the non-trivial shear stresses. In the absence of
a pressure gradient along the flow direction and ne-
glecting body forces, (4) together with the motion
equations leads to the governing equation for veloc-
ity [30], i.e.

λ
∂ 2u(y,z, t)

∂ t2 +
∂u(y,z, t)

∂ t

= ν

(
1+λr

∂

∂ t

)[
∂ 2

∂y2 +
∂ 2

∂ z2

]
u(y,z, t) ; t > 0 ,

(5)

where ν = µ/ρ is the kinematic viscosity and ρ is the
constant density of the fluid. In the following, the gov-
erning equations (4) and (5) together with appropriate
initial and boundary conditions will be solved using the
Fourier and Laplace transforms.

3. Formulation and Solution of the Problem

Let us consider an incompressible Oldroyd-B fluid
at rest over an infinite flat plate situated in the (x,z)-
plane, and between two side walls situated in the
planes z = 0 and z = d. After time t = 0+, the bot-
tom plate is set into motion so that the shear stress in
its plane is given by

τ1(0,z, t) = f
λω

1+λ 2ω2

·
{

1
λω

sin(ωt)− cos(ωt)+ e
−t
λ

} (6)

or

τ1(0,z, t) = f
λω

1+λ 2ω2 (7)

·
{

sin(ωt)+
1

λω
cos(ωt)− 1

λω
e
−t
λ

}
,

here f and ω > 0 are constants, ω being the frequency
of the oscillations. Owing to the shear, the fluid is grad-
ually moved. Its velocity is of the form (2a), the gov-
erning equations are given by (4) and (5) while the ap-
propriate initial and boundary conditions are given by

u(y,z,0) =
∂u(y,z, t)

∂ t

∣∣∣∣
t=0

= 0 , τ1(y,z,0) = 0 ,

τ2(y,z,0) = 0; y > 0 , z ∈ [0,d] ,
(8)

(
1+λ

∂

∂ t

)
τ1(0,z, t) = µ

(
1+λr

∂

∂ t

)
∂u(y,z, t)

∂y

∣∣∣∣
y=0

= f sin(ωt) or f cos(ωt) ; z ∈ (0,d) , t > 0 , (9)

u(y,0, t) = u(y,d, t) = 0; y > 0 , t ≥ 0 , (10)

u(y,z, t),
∂u(y,z, t)

∂y
→ 0 as y→ ∞ ;

z ∈ [0,d] , t ≥ 0 .

(11)

Of course, the expressions of τ1(0,z, t) given by (6)
and (7) are just the solutions of the partial differential
equation (9). For λ → 0, (6) and (7) take the simplified
forms

τ1(0,z, t) = f sin(ωt) or τ1(0,z, t) = f cos(ωt) , (12)
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they are boundary conditions corresponding to the mo-
tion of a Newtonian or second-grade fluid between
two side walls perpendicular to a plate that applies an
oscillating shear stress f sin(ωt) or f cos(ωt) to the
fluid [16, 24].

In the following, let us consider the complex fields

V (y,z, t) = uc(y,z, t)+ ius(y,z, t) ,
T1(y,z, t) = τ1c(y,z, t)+ iτ1s(y,z, t) ,
T2(y,z, t) = τ2c(y,z, t)+ iτ2s(y,z, t) ,

(13)

where us(y,z, t), τ1s(y,z, t), τ2s(y,z, t), and uc(y,z, t),
τ1c(y,z, t), τ2c(y,z, t) are the solutions of our problem
corresponding to the boundary conditions (6), respec-
tively (7), and i is the imaginary unit. In the following,
for simplicity, we shall refer to them as the solutions
corresponding to the sinusoidal or co-sinusoidal oscil-
lations of the shear stress on the boundary.

In view of the above notations, we obtain the fol-
lowing initial-boundary value problem:

λ
∂ 2V (y,z, t)

∂ t2 +
∂V (y,z, t)

∂ t
= ν

(
1+λr

∂

∂ t

)
·
[

∂ 2

∂y2 +
∂ 2

∂ z2

]
V (y,z, t) ; y, t > 0 , z ∈ (0,d) ,

(14)

(
1+λ

∂

∂ t

)
T1(y,z, t) = µ

(
1+λr

∂

∂ t

)
∂V (y,z, t)

∂y
,(

1+λ
∂

∂ t

)
T2(y,z, t) = µ

(
1+λr

∂

∂ t

)
∂V (y,z, t)

∂ z
;

y, t > 0 , z ∈ (0,d) , (15)

V (y,z,0) =
∂V (y,z, t)

∂ t

∣∣∣∣
t=0

= 0 ,

T1(y,z,0) = T2(y,z,0) = 0; y > 0 , z ∈ [0,d] ,
(16)

(
1+λ

∂

∂ t

)
T1(0,z, t) = µ

(
1+λr

∂

∂ t

)
∂V (y,z, t)

∂y

∣∣∣∣
y=0

= f eiωt ; z ∈ (0,d) , t > 0 , (17)

V (y,0, t) = V (y,d, t) = 0; y > 0 , t ≥ 0 , (18)

V (y,z, t),
∂V (y,z, t)

∂y
→ 0 as y→ ∞ ;

z ∈ [0,d] , t ≥ 0 .

(19)

3.1. Calculations of Velocity Field

In order to determine the solution of prob-
lem (14) – (19), we use the Fourier and Laplace trans-
forms [31 – 33]. Multiplying both sides of (14) by

√
2/π cos(yξ )sin(αkz), where αk = kπ/d, integrating

with respect to y and z from 0 to ∞ and 0 to d, re-
spectively, and using the corresponding boundary con-
ditions, we find that

λ
∂ 2Vk(ξ , t)

∂ t2 +
[
1+α(ξ 2 +α

2
k )
]

∂Vk(ξ , t)
∂ t

+ν(ξ 2 +α
2
k )Vk(ξ , t) =

f
ρ

√
2
π

[
(−1)k−1

αk

]
eiωt ,

(20)

where α = vλr and the double Fourier cosine and sine
transforms

Vk(ξ , t) =

√
2
π

∫
∞

0

∫ d

0
V (y,z, t)cos(yξ )sin(αkz)dzdy ,

k = 1,2,3, . . . , (21)

of the function V (y,z, t) satisfy the initial conditions

Vk(ξ ,0) =
∂Vk(ξ , t)

∂ t

∣∣∣∣
t=0

= 0 , k = 1,2,3, . . . . (22)

Applying the Laplace transform to (20) and us-
ing (22), we get

V̄k(ξ ,q) =
f
ρ

√
2
π

[
(−1)k−1

αk

](
(q− iω) (23)

·
[
λq2 +

[
1+α(ξ 2 +α

2
k )
]
q+ν(ξ 2 +α

2
k )
])−1

,

where V̄k(ξ ,q) is the Laplace transform of Vk(ξ , t).
Now, applying the inverse Laplace transform to (23)
and inverting the result by means of Fourier sine and
cosine formulae [32, 33], we obtain a first form of the
complex velocity V (y,z, t), namely

V (y,z, t) =− 8 f
ρπd

∞

∑
k=1

sin(αmz)
αm

·
∫

∞

0
fm(ξ , t)cos(yξ )dξ ,

(24)

where m = 2k− 1 and fm(ξ , t) is the inverse Laplace
transform of the function

Fm(ξ ,q) =
(

(q− iω)
[
λq2 +

[
1+α(ξ 2 +α

2
m)
]
q

+ν(ξ 2 +α
2
m)
])−1

.

By setting d = 2h and changing the origin of the co-
ordinate system at the middle of the channel (taking
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z = z∗+ h and dropping out the ∗ notation), the com-
plex velocity can be written in the more suitable form

V (y,z, t) =
4 f

ρπh

∞

∑
k=1

(−1)k cos(γmz)
γm

·
∫

∞

0
fm(ξ , t)cos(yξ )dξ ,

(25)

where γm = (2k−1)π
2h .

In order to determine the function fm(ξ , t), we firstly
write Fm(ξ ,q) in the form

Fm(ξ ,q) =
2

bm

1
q− iω

bm
2λ(

q+ am
2λ

)2− b2
m

4λ 2

, (26)

where am = am(ξ ) = 1+α(ξ 2 + γ2
m) and

bm = bm(ξ ) =
√

[1+α(ξ 2 + γ2
m)]2−4vλ (ξ 2 + γ2

m) .

Applying the inverse Laplace transform to (26), it
results that

fm(ξ , t) =
2

bm(ξ )

∫ t

0
eiω(t−s) sh

(
bm(ξ )

2λ
s

)
· exp

(
−am(ξ )

2λ
s

)
ds .

(27)

In view of (A1) from the Appendix, lengthy but
straightforward computations allow us to write fm(ξ , t)
in the form

fm(ξ , t) =
ωam sin(ωt)+

[
v(ξ 2+γ2

m)−λω2
]

cos(ωt)[
v(ξ 2 + γ2

m)−λω2
]2

+ω2a2
m

+

[
λω2− v(ξ 2 + γ2

m)[
v(ξ 2 + γ2

m)−λω2
]2

+ω2a2
m

ch

(
bmt
2λ

)
(28)

+
am

[
λω2− v(ξ 2+γ2

m)
]
−2λω2am

bm

[
v(ξ 2 + γ2

m)−λω2
]2

+ω2a2
m

sh

(
bmt
2λ

)]
e−

am
2λ

t

+ i

{[
v(ξ 2 + γ2

m)−λω2
]

sin(ωt)−ωam cos(ωt)[
v(ξ 2 + γ2

m)−λω2
]2

+ω2a2
m

+

[
2λω

[
λω2− v(ξ 2 + γ2

m)
]
+ωa2

m

bm

[
v(ξ 2 + γ2

m)−λω2
]2

+ω2a2
m

sh

(
bmt
2λ

)

+
ωam[

v(ξ 2 + γ2
m)−λω2

]2
+ω2a2

m

ch

(
bmt
2λ

)]
e−

am
2λ

t

}
.

This expression can be further processed to give the
more suitable form

fm(ξ , t) =
λrω(ξ 2 +d2

m)+ c

β

[
(ξ 2 +d2

m)2 + c2
] sin(ωt)

+
(ξ 2 +d2

m)−λrωc

β

[
(ξ 2 +d2

m)2 + c2
] cos(ωt)

+
[

Mm ch

(
bmt
2λ

)
+Nm sh

(
bmt
2λ

)]
exp
(
−amt

2λ

)
+ i

{
(ξ 2 +d2

m)−λrωc

β

[
(ξ 2 +d2

m)2 + c2
] sin(ωt) (29)

− λrω(ξ 2 +d2
m)+ c

β

[
(ξ 2 +d2

m)2 + c2
] cos(ωt)

+

[
Pm ch

(
bmt
2λ

)
+Qm sh

(
bmt
2λ

)]
exp
(
−amt

2λ

)}
,

where

β = v(1+λ
2
r ω

2) ,

c =
(1+λλrω

2)ω
β

, d2
m = γ

2
m +

(λr−λ )ω2

β
,

Mm = Mm(ξ ) =
λrωc− (ξ 2 +d2

m)

β

[
(ξ 2 +d2

m)2 + c2
] ,

Nm = Nm(ξ )

=

[
c
ω

+λr(ξ 2 +d2
m)
][

va−λω2− v(ξ 2 +d2
m)
]

βbm

[
(ξ 2 +d2

m)2 + c2
] ,

Pm = Pm(ξ ) =
λrω(ξ 2 +d2

m)+ c

β

[
(ξ 2 +d2

m)2 + c2
] and

Qm = Qm(ξ ) =
(

vωλ
2
r (ξ 2+d2

m)2 +2(vλrc−λω)(ξ 2

+d2
m)+

vc2

ω
+2λλrω

2c

)(
βbm

[
(ξ 2 +d2

m)2 + c2
])−1

.

Of course, the velocities uc(y,z, t) and us(y,z, t) cor-
responding to cosine or sine type oscillations on the
boundary are obtained by introducing (29) into (25)
and taking the real part, respectively the imaginary part
of the function fm(ξ , t). Their expressions can be writ-
ten as a sum of steady-state and transient solutions,
namely
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uc(y,z, t) = us
c(y,z, t)+ut

c(y,z, t) , (30a)

us(y,z, t) = us
s(y,z, t)+ut

s(y,z, t) . (30b)

It is worth pointing out that in view of (A2) and (A3)
from the Appendix, the steady-state solutions can be
written in the simple forms

us
c(y,z, t) =

2 f
µh

1√
1+λ 2

r ω2
(31)

·
∞

∑
k=1

(−1)k cos(γmz)
γm

e−Bmy√
A2

m +B2
m

cos(ωt−Amy−φm) ,

us
s(y,z, t) =

2 f
µh

1√
1+λ 2

r ω2
(32)

·
∞

∑
k=1

(−1)k cos(γmz)
γm

e−Bmy√
A2

m +B2
m

sin(ωt−Amy−φm) ,

where 2A2
m =

√
d4

m + c2− d2
m, 2B2

m =
√

d4
m + c2 + d2

m,
and tanφm = (Am +λrωBm)(Bm−λrωAm)−1.

As expected, they differ by a phase shift. This is not
true for transient components. Therefore we separately
present here the starting solutions for both types of os-
cillations. As regards, the transient solutions from (29)
and (25), it results that

ut
c(y,z, t) =

4 f
ρπh

∞

∑
k=1

(−1)k cos(γmz)
γm

·
∫

∞

0

[
Mm(ξ )ch

(
bmt
2λ

)
+Nm(ξ )sh

(
bmt
2λ

)]
· exp

(
−amt

2λ

)
cos(yξ )dξ , (33)

ut
s(y,z, t) =

4 f
ρπh

∞

∑
k=1

(−1)k cos(γmz)
γm

·
∫

∞

0

[
Pm(ξ )ch

(
bmt
2λ

)
+Qm(ξ )sh

(
bmt
2λ

)]
exp
(
−amt

2λ

)
cos(yξ )dξ . (34)

The starting solutions are usually important for
those who want to eliminate the transients from their
experiments. They describe the motion of the fluid
some time after its initiation. After that time, they tend
to steady-state solutions that are periodic in time and
independent of the initial conditions. However, they
satisfy the governing equations and boundary condi-
tions. As a check of our results, by letting λ → 0,
λr → 0, or λ ,λr → 0 into general solutions (30), we
attain to the known solutions for second-grade [24],

Maxwell [26] and, respectively, Newtonian fluids [16].
Equation (32), for instance, reduces to [24, (29) with
ϕ = 0] if λ → 0 while (30b), for instance reduces
to [26, (26)] if λr→ 0. Also (30b) reduces to [16, (14)]
if λ ,λr→ 0 and corresponds to an oscillating shear on
the boundary of the form f sinωt. Finally, the required
time to reach the steady state will be determined by
graphical illustrations.

3.2. Calculation of Shear Stress

In order to be able to find the shear stresses in planes
parallel to the bottom wall or on the side walls, we need
the general expressions of τ1(y,z, t) and τ2(y,z, t). To
do that, we introduce V (y,z, t), given by (25), into (15),
apply the Laplace transform and use the corresponding
initial conditions (16). In order to avoid repetition, we
here present the final results for τ1(y,z, t) only:

τ1c(y,z, t) = τ
s
1c(y,z, t)+ τ

t
1c(y,z, t) , (35)

τ1s(y,z, t) = τ
s
1s(y,z, t)+ τ

t
1s(y,z, t) . (36)

Equations (35) and (36) clearly show that shear
stresses are also presented as sum of steady-state and
transient solutions. In view of (A4) and (A5) from
the Appendix, the steady-state solutions can be written
in simple forms as

τ
s
1c(y,z, t) =

2 f

h
√

1+λ 2ω2

∞

∑
k=1

(−1)k+1 cos(γmz)
γm

· e−Bmy cos(ωt−Amy−ψ) ,
(37)

τ
s
1s(y,z, t) =

2 f

h
√

1+λ 2ω2

∞

∑
k=1

(−1)k+1 cos(γmz)
γm

· e−Bmy sin(ωt−Amy−ψ) ,
(38)

where tanψ = λω . As expected, they also differ by
a phase shift.

The transient solution components are

τ
t
1c(y,z, t) =

2 f
h(1+λ 2ω2)

∞

∑
k=1

(−1)k cos(γmz)
γm

e−yγm− t
λ

+
4 f

πhλ

∞

∑
k=1

(−1)k+1 cos(γmz)
γm

∫
∞

0

{(
λrvMm

+
(2−am)Mm−bmNm

2(ξ 2 + γ2
m)

)
ch

(
bmt
2λ

)
+
(

λrvNm +
(2−am)Nm−bmMm

2(ξ 2 + γ2
m)

)
sh

(
bmt
2λ

)}
· exp

(
−amt

2λ

)
ξ sin(yξ )dξ ,

(39)
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τ
t
1s(y,z, t) =

2 f λω

h(1+λ 2ω2)

∞

∑
k=1

(−1)k+1 cos(γmz)
γm

· e−yγm− t
λ +

4 f
πhλ

∞

∑
k=1

(−1)k+1 cos(γmz)
γm

(40)

·
∫

∞

0

{(
λrvPm +

(2−am)Pm−bmQm

2(ξ 2 + γ2
m)

)
ch

(
bmt
2λ

)

+
(

λrvQm +
(2−am)Qm−bmPm

2(ξ 2 + γ2
m)

)
sh

(
bmt
2λ

)}
· exp

(
−amt

2λ

)
ξ sin(yξ )dξ .

As a check of general results, by letting λ → 0, λr→ 0,
or λ ,λr → 0 into general solutions (35) and (36), for
instance, the known solutions for second-grade [24,
(30) and (31)], Maxwell [26, (28)], and Newtonian flu-
ids [16, (17) and (19)], respectively, can be recovered.

4. Limiting Case h→ ∞h→ ∞h→ ∞ (Flow Over an Infinite
Plate)

In order to determine the influence of the side walls
on the fluid motion, we need the similar solutions cor-
responding to the motion over an infinite plate that ap-
plies shear of the same form (6) or (7) to the fluid. By
making h→ ∞ into general solutions (30a), (30b) and
bearing in mind (A6) from the Appendix and the fact
that

γm→ 0 , d2
m→ d2 =

(λr−λ )ω2

v(1+λ 2
r ω2)

,

2A2
m→ 2A2 =

√
d4 + c2−d2 ,

2B2
m→ 2B2 =

√
d4 + c2 +d2 ,

tanφm→ tanφ =
A+λrωB
B−λrωB

=

√
1+λ 2ω2 +λω

√
1+λ 2

r ω2√
1+λ 2

r ω2−λrω
√

1+λ 2ω2
,

we find for the velocities vc(y, t) and vs(y, t) the expres-
sions

vc(y, t) =− f
µ

√
v
ω

e−By

4
√

(1+λ 2ω2)(1+λ 2
r ω2)

· cos(ωt−Ay−φ)+
2 f

µvπ

1
1+λ 2

r ω2

∫
∞

0

cos(yξ )
(ξ 2+d2)2 + c2

·

[
(vξ

2−λω
2)ch

(
b(ξ )
2λ

t

)
+

a(ξ )
b(ξ )

(vξ
2 +λω

2)

· sh

(
b(ξ )
2λ

t

)]
exp

(
−a(ξ )

2λ
t

)
dξ , (41)

vs(y, t) =− f
µ

√
v
ω

e−By

4
√

(1+λ 2ω2)(1+λ 2
r ω2)

· sin(ωt−Ay−φ)− 2 f
µvπ

ω

1+λ 2
r ω2

∫
∞

0

cos(yξ )
(ξ 2+d2)2+c2

·

[
a(ξ )ch

(
b(ξ )
2λ

t

)
+

a2(ξ )−2λ (vξ 2−λω2)
b(ξ )

· sh

(
b(ξ )
2λ

t

)]
exp

(
−a(ξ )

2λ
t

)
dξ . (42)

As expected, these solutions are identical to those
obtained in [28, (27) and (28)]. In order to show this
for steady-state solutions, it is enough to observe that
between the two angles there exists the relation ϕ =
π

2 −φ .
Also, by letting λr → 0 into (41) and (42), we ob-

tain the known results for Maxwell fluids [27, (23) and
(22)].

Similarly, we find for the shear stresses τc(y, t) and
τs(y, t) the expressions

τc(y, t) =
f√

1+λ 2ω2
e−By cos(ωt−Ay−ψ)

− f
1+λ 2ω2 e−

t
λ +

2 f
π

1
v2(1+λ 2

r ω2)

·
∫

∞

0

sin(yξ )
ξ ((ξ 2 +d2)2 + c2)

{
ω

2a(ξ )ch

(
b(ξ )t

2λ

)

− a2(ξ )ω2 +2vξ 2(vξ 2−λω2)
b(ξ )

sh

(
b(ξ )t

2λ

)}

· exp

(
−a(ξ )t

2λ

)
dξ ,

(43)

τs(y, t) =
f√

1+λ 2ω2
e−By sin(ωt−Ay−ψ)

+
f λω

1+λ 2ω2 e−
t
λ +

2 f
π

ω

v2(1+λ 2
r ω2)

(44)

·
∫

∞

0

sin(yξ )
ξ ((ξ 2 +d2)2 + c2)

{
(vξ

2−λω
2)ch

(
b(ξ )t

2λ

)

+
a(ξ )(vξ 2+λω2)

b(ξ )
sh

(
b(ξ )t

2λ

)}
exp

(
−a(ξ )t

2λ

)
dξ .

They are identical to those obtained in [28, (42) and
(43)]. Again, by letting λr → 0 in (41) and (42),
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Fig. 1. Profile of velocities us(y,0, t) given by (30b)-curve us(y) and vs(y, t) given by (42)-curve vs(y) with f = 50, v = 0.024,
µ = 2.28, λ = 1.2, λr = 0.8, ω = 4, and h = 0.25 for sine oscillations of the shear.

Fig. 2. Profile of velocities uc(y,0, t) given by (30a)-curve uc(y) and vc(y, t) given by (41)-curve vc(y) with f = 50, v = 0.024,
µ = 2.28, λ = 1.2, λr = 0.8, ω = 4, and h = 0.25 for cosine oscillations of the shear.

the known results for shear stress of Maxwell fluids
model [27, (36) and (35)] can be recovered.

5. Numerical Results and Conclusions

In this paper, unsteady motions of Oldroyd-B flu-
ids between two parallel walls perpendicular to a plate
that applies two types of shears to the fluid are studied
using integral transforms. Exact solutions are obtained
both for velocity and non-trivial shear stresses. They
are presented in simple forms as a sum of steady-state
and transient solutions and can easily be particular-
ized to give the similar solutions for Maxwell, second-
grade, and Newtonian fluids. Known solutions for the

motion over an infinite plate, applying the same shears
to the fluid, are recovered as limiting cases of general
solutions. To analyse the influence of side walls on the
motion of the fluid and to explore some of the relevant
physical aspects of the obtained results, the diagrams
of velocities us(y,0, t) and uc(y,0, t) in the middle of
the channel as well as those of vs(y, t) and vc(y, t), cor-
responding to the motion over an infinite plate, have
been drawn against y for the same values of t and of the
material constants. As it results from Figures 1 and 2,
there is a significant effect of walls. At low values of
t, the influence of the side walls on the fluid motion
near the bottom plate is stronger for sine oscillations
as compare to cosine oscillations. This is obvious be-
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Fig. 3. Required time to reach the steady state for the sine
oscillations of the shear stress for f = 50, v = 0.024, µ =
2.28, λ = 1.2, λr = 0.8, ω = 4, and different values of h.

cause at t = 0 the shear stress on the boundary is zero
for sine oscillations.

In practice, it is also important to know the required
time to reach the steady state. This time has been deter-
mined in Figures 3 and 4 for different values of h. As
expected, the required time to reach the steady state in-
creases if the distance between the side walls increases.
Furthuremore, this time value is greater for the sine os-
cillations as compare to the cosine oscillations of the

Fig. 5. Required time to reach the steady state for the sine
oscillations of the shear stress for f = 50, v = 0.024, µ =
2.28, λ = 1.2, λr = 0.8, h = 0.35, and different values of ω .

Fig. 4. Required time to reach the steady state for the cosine
oscillations of the shear stress for f = 50, v = 0.024, µ =
2.28, λ = 1.2, λr = 0.8, ω = 4, and different values of h.

shear stress on the boundary. As it can be seen in Fig-
ures 5 and 6, this time increases if the frequency ω of
the oscillation decreases.

To determine the distance between the side walls for
which the measured value of the velocity in the middle
of the channel is unaffected by the presence of the side
walls (approximately it is equal to the velocity corre-
sponding to the motion over an infinite plate), Figures 7
and 8 have been prepared.

Fig. 6. Required time to reach the steady state for the cosine
oscillations of the shear stress for f = 50, v = 0.024, µ =
2.28, λ = 1.2, λr = 0.8, h = 0.35, and different values of ω .
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Fig. 7. Profile of velocities us(y,0, t) given by (30b)-curve
u1s(y), u2s(y), u3s(y), and vs(y, t) given by (42)-curve v1s(y),
v2s(y), v3s(y) for f = 50, v = 0.024, µ = 2.28, λ = 1.2,
λr = 0.8, ω = 4, and different values of t.

This distance as it results from graphs, is hs = 2.15
for sine oscillations and hc = 0.95 for the cosine os-
cillations of the shear stress. The units of the material
constants in Figures 1 – 8 are SI units.
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Appendix∫ t

0
e−(iω+ am

2λ
)s sh

(
bm

2λ
s

)
ds (A1)

=
1

2 [λω2− v(ξ 2 + γ2
m)− iωam]

·

{[
bm ch

(
bm

2λ
t

)

Fig. 8. Profile of velocities uc(y,0, t) given by (30a)-curve
u1c(y), u2c(y), u3c(y), and vc(y, t) given by (41)-curve v1c(y),
v2c(y), v3c(y) for f = 50, v = 0.024, µ = 2.28, λ = 1.2,
λr = 0.8, ω = 4, and different values of t.

+2λ

(
iω +

am

2λ

)
sh

(
bm

2λ
t

)]
e−(iω+ am

2λ
)t −bm

}
,

∫
∞

0

(ξ 2 +d2)cos(yξ )
(ξ 2 +d2)2 + c2 dξ

=
π e−yB

2(A2 +B2)

[
Bcos(yA)−Asin(yA)

]
,

(A2)

∫
∞

0

cos(yξ )
(ξ 2 +d2)2 + c2 dξ

=
π e−yB

2c(A2 +B2)

[
Acos(yA)+Bsin(yA)

]
,

(A3)

∫
∞

0

(ξ 2 +d2)ξ sin(yξ )
(ξ 2 +d2)2 + c2 dξ =

π

2
e−yB cos(yA) , (A4)

∫
∞

0

ξ sin(yξ )
(ξ 2 +d2)2 + c2 dξ =

π

2c
e−yB sin(yA) , (A5)

where 2A2 =
√

d4 + c2−d2 , 2B2 =
√

d4 + c2 +d2.

lim
h→∞

2
h

∞

∑
n=1

(−1)n+1 cos(γmz)
γm

= 1 . (A6)
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