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The parametric Nikiforov–Uvarov (pNU) and asymptotic iteration method (AIM) are applied to
study the approximate analytic bound state eigensolutions (energy levels and wave functions) of the
radial Schrödinger equation (SE) for the Hellmann potential which represents the superposition of
the attractive Coulomb potential (−a/r) and the Yukawa potential bexp(−δ r)/r of arbitrary strength
b and screening parameter δ in closed form. The analytical expressions to the energy eigenvalues Enl
yield quite accurate results for a wide range of n, l in the limit of very weak screening but the results
become gradually worse as the strength b and the screening coefficient δ increase. The calculated
bound state energies have been compared with available numerical data. Special cases of our solution
like pure Coulomb and Yukawa potentials are also investigated.
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1. Introduction

A two particle system interacting through a combi-
nation of the attractive Coulomb and the Yukawa po-
tential can be expressed as

V (r) =−a
r

+
b
r

e−δ r , (1)

where the parameters a and b denote the strength of
the Coulomb and Yukawa potentials, respectively, δ

denotes the screening parameter, and r is the distance
between two particles. The parameters a and δ are
positive, and b can be both positive as well as neg-
ative. The Hellmann potential with b > 0 was firstly
proposed by Hellmann [1 – 3] and thereafter has been
used to include both positive and negative b. It has
many applications in atomic and condensed matter
physics; e. g., the electron-core [4, 5], electron–ion in-
teractions [6, 7], inner-shell ionization problem [8], al-
kali hydride molecules [9], solid-state physics [10, 11],
etc.

Over the past years, the potential model (1) has re-
ceived much concern from many authors. The radial
Schrödinger equation (SE) does not admit exact analyt-
ical solutions and one has to resort to the approximate
methods such as the variational or perturbative tech-
niques [12]. It is worth to be noted that the bound state
spectra of this potential model are the presence of com-
plex states crossings [12] and the absence of accidental
degeneracies (characteristics of the pure Coulomb po-
tential). Shortly later, shifted large N expansion tech-
nique [13] reported the energy levels with more or less
accuracy as those of perturbative technique. This pre-
scription yields reasonably accurate results for very
weak screenings and gradually worsens as b and δ

increases. Attempts have been made to use the first-
order Rayleigh–Schrödinger perturbation theory to ob-
tain approximate formulae for bound eigenstates [14].
Lately, the combined Hellmann–Feynman theorem has
also been used to study bound states [15].

In the current treatment of this potential model,
many difficulties have been faced that deserve careful
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and thorough examinations. In the recent years, many
excellent and highly accurate energy states have been
achieved for both the Coulomb and Yukawa poten-
tials [16 – 18] within the framework of some perturba-
tive approaches.

Thus a general reliable formalism or a nonperturba-
tive approach which can offer accurate results for wide
range arbitrary values of the interaction parameters for
both lower and higher states would have their merits.
The generalized pseudospectral (GPS) method that re-
ports accurate eigenvalues for all n≤ 5 states have been
recently used with the advantage of varying the inter-
action parameters covering a large range of parame-
ters [19].

The trajectories of the poles of the S-matrix for the
Hellmann potential in the complex energy plane have
been studied near the critical screening parameter [20].
The calculation has been performed using the J-matrix
approach which uses a suitable L2 basis to tridiago-
nalize the reference Hellmann matrix. This calculated
bound and resonance state energies have been com-
pared with available normalized data.

The method of potential envelopes is used to analyze
the bound state spectrum of the Schrödinger equation
with Hellmann potential [21]. They established simple
formulae yielding upper and lower bounds for all the
energy eigenvalues.

In our recent work, we applied a methodology to
study the bound states of the Hellmann potential based
on the decomposition of the radial SE into two pieces
having an exactly solvable part and an additional piece
leading to either analytic solution or approximate treat-
ment depending on the nature of the additional per-
turbed potential [22]. The bound state energy eigenval-
ues of the generalized Hellmann potential are obtained
using the hypervirial 1/N expansion method together
with the Hellmann–Feynman theorem [23]. Results are
analytically given up to the fourth order of screening
parameters λ and µ .

An alternative and accurate solution of the radial
SE for the Hellmann potential has been found within
the framework of the asymptotic iteration method
(AIM) [24]. It was shown that the bound state en-
ergy eigenvalues can be obtained easily for any n and
l values without using any approximations required by
other methods.

The priority purpose of the present work is to solve
the Schrödinger equation for the Hellmann potential
and to calculate the energy eigenvalues and the corre-

sponding wave functions which are expressed in terms
of the Jacobi polynomials for any orbital quantum
number l. We computed the energy spectrum numer-
ically for weak and strong screening parameter δ and
strong coupling b. The parametric Nikiforov–Uvarov
(pNU) and AIM methods are used in present calcula-
tions

The article is organized as follows: Section 2 gives
a brief outline of the pNU method [25 – 28] used to
solve the SE in the presence of the Hellmann poten-
tial. Analytical expressions for energy levels and cor-
responding wave functions are obtained for any n and l
quantum numbers in Section 3. We finalize with a few
concluding remarks in Section 4.

2. The Nikiforov–Uvarov (NU) Method

This powerful mathematical tool could be used to
solve second-order differential equations. Considering
the following differential equation [29]:

ψ
′′
n (s)+

τ̃(s)
σ(s)

ψ
′
n(s)+

σ̃(s)
σ2(s)

ψn(s) = 0 , (2)

where σ(s) and σ̃(s) are polynomials of second degree
at most, and τ̃(s) is a first-degree polynomial. To make
the application of the NU method [29] simpler and the
checking of the validity of solution unnecessary, we
write a shortcut of the method. At first, we write the
general form of the Schrödinger-like equation (2) in
a more general form [25 – 28]:

ψ
′′
n (s)+

(
c1− c2s

s(1− c3s)

)
ψ
′
n(s)

+
(
−Q2s2 +Q1s−Q0

s2(1− c3s)2

)
ψn(s) = 0 ,

(3)

where the wave functions satisfy

ψn(s) = φ(s)yn(s) . (4)

Now, comparing (3) with its counterpart (2), we can
obtain

τ̃(s) = c1− c2s , σ(s) = s(1− c3s) ,

σ̃(s) =−Q2s2 +Q1s−Q0 .
(5)

Further, according to the NU method [8], one can ob-
tain the bound-state energy equation [25]
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c2n− (2n+1)c5 +(2n+1)
(√

c9 + c3
√

c8

)
+n(n−1)c3 + c7 +2c3c8 +2

√
c8c9 = 0 .

(6)

In addition, we also find that the functions

ρ(s) = sc10(1− c3s)c11 , φ(s) = sc12(1− c3s)c13 ,

c12 > 0 , c13 > 0 ,

yn(s) = P(c10,c11)
n (1−2c3s) , c10 >−1 , c11 >−1 ,

(7)

are necessary in calculating the wave functions

ψnl(s) = Nnls
c12(1− c3s)c13 P(c10,c11)

n (1−2c3s) , (8)

where Nnl is a normalization constant and P(µ,ν)
n (x),

µ > −1, ν > −1, x ∈ [−1,1], are Jacobi polynomials
with constant parameters [25]

c4 =
1
2
(1− c1) , c5 =

1
2
(c2−2c3) ,

c6 = c2
5 +Q2 , c7 = 2c4c5−Q1 ,

c8 = c2
4 +Q0 , c9 = c3(c7 + c3c8)+ c6 ,

c10 = c1 +2c4 +2
√

c8−1 >−1 ,

c11 = 1− c1−2c4 +
2
c3

√
c9 >−1 , c3 6= 0 ,

c12 = c4 +
√

c8 > 0 ,

c13 =−c4 +
1
c3

(√
c9− c5

)
> 0 , c3 6= 0,

(9)

with c12 > 0, c13 > 0, and s ∈ [0,1/c3], c3 6= 0. Also,
the e wave function (8) can be expressed in terms of
the hypergeometric function as

ψnl(s) = Nnls
c12(1− c3s)c13

· 2F1(−n,1+ c10 + c11 +n;c10 +1;c3s) .
(10)

In the more special case of c3 = 0, the wave func-
tion (8) becomes

lim
c3→0

P(c10,c11)
n (1−2c3s) = L(c10)

n (c11s) ,

lim
c3→0

sc12(1− c3s)c13 = sc12 ec13s ,

ψnl(s) = Nnls
c12 ec13sL(c10)

n (c11s) ,

(11)

where L(α)
n (x) are the associated Laguerre polynomi-

als.

3. Bound State Solutions of the Schrödinger
Equation for the Hellmann Potential

3.1. Solutions via pNU Method

The three-dimensional Schrödinger equation for
two interacting particles via the Hellmann potential
field given in (1) takes the form [30, 31](

− h̄2

2µ
∇

2− a
r

+
b
r

e−δ r
)

ψ(r) = Eψ(r) ,

ψ(r) =
1
r

unl(r)Ylm(θ ,ϕ) .
(12)

Using the separation of variables, we can obtain the
following radial SE:[

d2

dr2 +
2µ

h̄2

(
E +

a
r
−b

e−δ r

r

)
− l(l +1)

r2

]
unl(r) = 0 .

(13)

Since the above radial SE with the Hellmann potential
has no exact solution, we resort to an approximation
scheme to deal with the rotational centrifugal term as

1
r2 ≈

δ 2

(1− e−δ r)2
,

1
r
≈ δ

1− e−δ r
, (14)

which is valid only for δ r � 1 [31]. Therefore, the
Hellmann potential in (1) can be expressed in the
form [32 – 34]

V (r)'−δ
(a−be−δ r)

1− e−δ r
. (15)

To show the accuracy of the present approximation, we
have sketched the Hellmann potential (1) and its ap-
proximation (15) with parameter values a = 2, b =−4,
and δ = 0.01 in Figure 1.

Now substituting (14) into (13) gives[
1

δ 2

d2

dr2 − ε +
α

1− e−δ r
− β e−δ r

1− e−δ r

− Λ

(1− e−δ r)2

]
unl(r) = 0 , unl(0) = 0 ,

(16)

with the following identifications:

ε =−2µE

h̄2
δ 2

, α =
2µa

h̄2
δ

, β =
2µb

h̄2
δ

,

Λ = l(l +1) .
(17)
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Fig. 1 (colour online). Variation of the Hellmann potential
and its approximation with r.

To solve (16) by means of the pNU method, we make
an appropriate change of variables s = e−δ r, s ∈ (0,1),
and hence it recasts as

d2unl(s)
ds2 +

1− s
s(1− s)

dunl(s)
ds

+
1

s2(1− s)2

[
− (ε−β )s2

+(2ε−α−β )s− (ε +Λ −α)
]
unl(s) = 0 (18)

with unl(s = 0) = 0 and unl(s = 1) = 0. Comparing (18)
with (3), we can easily obtain the coefficients ck (k =
1,2,3) together with the analytical expressions Qi (i =
1,2,3) as follows:

c1 = 1 , Q2 = ε−β ,

c2 = 1 , Q1 = 2ε−α−β ,

c3 = 1 , Q0 = ε +Λ −α .

(19)

By using (9), we find the remaining values of other
constants ck (k = 4,5, . . . ,13) for the Hellmann poten-
tial model as displayed in Table 1. Further, using (6),
we can obtain energy formula for the Hellmann poten-
tial as

Enl =
h̄2l(l +1)δ 2

2µ
−aδ − µ

2h̄2 (20)

·
[

a−b− h̄2l(l+1)δ/(2µ)
(n+ l +1)

− h̄2(n+l+1)δ
2µ

]2

,

where n = 0,1,2, . . . ,nmax.

Table 1. Parametric constants for the Hellmann potential.

constant Value
c4 0
c5 −1/2
c6 ε−β +1/4
c7 α +β −2ε

c8 ε +Λ −α

c9 (l +1/2)2

c10 2
√

ε +Λ −α

c11 2l +1
c12

√
ε +Λ −α

c13 l +1

3.2. Solutions via the Asymptotic Iteration Method

By using the AIM [35 – 51], we can also solve dif-
ferential equation (18). The details about this method
can be found in [50, 51]. For this purpose, we use
a transformation of the form

unl(s) = sp(1− s)qR(s) , p =
√

ε +Λ −α ,

q = l +1 , (21)

by which (18) is easily transformed into the more con-
venient second-order homogeneous linear differential
equation

R′′(s)+
[

2p+1− s(2p+2q+1)
s(1− s)

]
R′(s)

−
[
(p+q)2− ε +β

s(1− s)

]
R(s) = 0

(22)

with a solution being found by using AIM [50, 51].
The systematic procedure of the AIM begins by

rewriting (22) in the form [50, 51]

R′′(s)−λk(s)R′(s)−Sk(s)R(s) = 0 . (23)

For sufficiently large k [50, 51], the following recur-
rence relation can be used to determine the λk and sk
(k = 1,2,3, . . .) values:

λk(s) = λ
′
k−1(s)+Sk−1(s)+λ0(s)λk−1(s) ,

Sk(s) = S′k−1(s)+S0(s)λk−1(s) , k = 1,2,3, . . . .
(24)

In accordance with AIM [50, 51], the energy eigen-
value equations are obtained from the roots of the
equation

δk =
∣∣∣∣ λk(s) Sk(s)
λk−1(s) Sk−1(s)

∣∣∣∣= 0 , k = 1,2,3, . . . . (25)
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Table 2. Energy eigenvalues of the special case a = 0, b→−V0 in units h̄ = µ = 1. For comparison with other methods, we
set V0 =

√
2 and δ = gb.

States g Present (AIM & pNU) SUSY [52] AIM [53] Numerical [54]
1s 0.002 −0.998001000 −0.99601 −0.996006 −0.99600
1s 0.005 −0.995006250 −0.99004 −0.990037 −0.99000
1s 0.010 −0.990025000 −0.98015 −0.980149 −0.98010
1s 0.020 −0.980100000 −0.96059 −0.960592 −0.96060
1s 0.025 −0.975156250 −0.95092 −0.950922 −0.95090
1s 0.050 −0.950625000 −0.90363 −0.903632 −0.90360
2s 0.002 −0.248004000 −0.24602 −0.246023 −0.24600
2s 0.005 −0.245025000 −0.24015 −0.240148 −0.24010
2s 0.010 −0.240100000 −0.23059 −0.230586 −0.23060
2s 0.020 −0.230400000 −0.21230 −0.212296 −0.21230
2s 0.025 −0.225625000 −0.20355 −0.203551 −0.20360
2s 0.050 −0.202500000 −0.16351 −0.163542 −0.16350
2p 0.002 −0.247001000 −0.24602 −0.246019 −0.24600
2p 0.005 −0.242506250 −0.24012 −0.240123 −0.24010
2p 0.010 −0.235025000 −0.23049 −0.230490 −0.23050
2p 0.020 −0.220100000 −0.21192 −0.211926 −0.21190
2p 0.025 −0.212656250 −0.20299 −0.202984 −0.20300
2p 0.050 −0.175625000 −0.16144 −0.161480 −0.16150
3p 0.002 −0.108672111 −0.10716 −0.107160 −0.10720
3p 0.005 −0.105034028 −0.10142 −0.101416 −0.10140
3p 0.010 −0.099025000 −0.09231 −0.092306 −0.09231
3p 0.020 −0.087211111 −0.07570 −0.075704 −0.07570
3p 0.025 −0.081406250 −0.06814 −0.068157 −0.06816
3p 0.050 −0.053402778 −0.03739 −0.037115 −0.03712
3d 0.002 −0.107778778 −0.10715 −0.107152 −0.10720
3d 0.005 −0.102784028 −0.1014 −0.101368 −0.10140
3d 0.010 −0.094469444 −0.09212 −0.092122 −0.09212
3d 0.020 −0.077877778 −0.07502 −0.075030 −0.07503
3d 0.025 −0.069600694 −0.06713 −0.067146 −0.06715
3d 0.050 −0.028402778 −0.03388 −0.033831 −0.03383

Thus, by using the above quantization condition (25)
and recurrence relations (24), we can establish the fol-
lowing relations:

S0λ1−S1λ0 = 0⇒ p+q = 0+
√

ε−β , (26)

S1λ2−S2λ1 = 0⇒ p+q =−1+
√

ε−β ,

S2λ3−S3λ2 = 0⇒ p+q =−2+
√

ε−β ,

...

Snλn+1−Sn+1λn = 0⇒ p+q =−n+
√

ε−β .

The energy eigenvalues can so be easily found by using
the nth term of the series, i. e.

p+q =−n+
√

ε−β

⇔ p2 =
[
− (n+q)+

√
ε−β

]2 (27)

or more explicitly as

Enl =−bδ − µ

2h̄2

[
h̄2(n+ l +1)δ

2µ

− b−α + h̄2l(l +1)δ/(2µ)
(n+ l +1)

]2

.

(28)
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Fig. 2 (colour online). Variation of energy eigenvalues as
function of strength b for various quantum states.
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Table 3. Comparison of the calculated energy eigenvalues with the literature for δ = 0.01 as a functions of the strength b.

b\state Present (AIM & NU) [35] Present (AIM & NU) [35] Present (AIM & NU) [35]
(2p) (3p) (3p) (3p) (3d) (3d)

1 −0.06875625 −0.0720203 −0.034756250 −0.0366436 −0.033617361 −0.0368131
0.5 −0.14500625 −0.1454630 −0.067950694 −0.0671090 −0.066256250 −0.0671683
0.2 −0.20575625 −0.2044460 −0.094534028 −0.0918682 −0.092506250 −0.0918884
0 −0.25250625 −0.2500000 −0.115034028 −0.1110000 −0.112784028 −0.1110000
−0.2 −0.30425625 −0.3005450 −0.137756250 −0.1325530 −0.135284028 −0.1325370
−0.5 −0.39125625 −0.3857230 −0.176006250 −0.1688520 −0.173200694 −0.1688150
−1 −0.56125625 −0.5526640 −0.250867361 −0.2404040 −0.247506250 −0.2403410
−2 −0.99500625 −0.9802480 −0.442256250 −0.4250550 −0.437784028 −0.4249590
−5.0 −3.04625625 −3.0128600 −1.349756250 −1.3119900 −1.341950694 −1.3118500
−10 −8.96500625 −8.9004200 −3.973367361 −3.9010300 −3.960006250 −3.9008700
−20 −30.1775063 −30.050500 −13.38725625 −13.245600 −13.36278403 −13.245400

Table 4. Comparison of the calculated energy eigenvalues with the literature for b =−10 as a functions of the strength δ .

states Present (AIM & NU) [35] Present (AIM & NU) [35] Present (AIM & NU) [35]
δ = 0.001 δ = 0.001 δ = 0.01 δ = 0.01 δ = 0.1 δ = 0.1

1s −35.99800006 −35.9900 −35.98000625 −35.9001 −35.80062500 −35.0124
2s −8.998000250 −8.99000 −8.980025000 −8.90050 −8.802500000 −8.04820
2p −8.998000250 −8.99000 −8.965006250 −8.90042 −8.650625000 −8.04037
3s −3.998000562 −3.99001 −3.980056250 −3.90112 −3.805625000 −3.10435
3p −3.997333674 −3.99001 −3.973367361 −3.90103 −3.736736111 −3.09701
3d −3.996000062 −3.99001 −3.960006250 −3.90087 −3.600625000 −3.08240
4s −2.248001000 −2.24002 −2.230100000 −2.15197 −2.060000000 −1.42667
4p −2.247625766 −2.24002 −2.226326562 −2.15189 −2.020156250 −1.41993
4d −2.246875391 −2.24002 −2.218789062 −2.15173 −1.941406250 −1.40652
4f −2.245750062 −2.24001 −2.207506250 −2.15148 −1.825625000 −1.38656

In Figures 2 and 3, we show the variation of the en-
ergy eigenvalues as function of strength parameter and
screening parameter, respectively, for various quantum
states. Some numerical results are given in Tables 2 –
4. In Table 2, we take the parameter values h̄ = µ = 1,
a =
√

2, b = 1, and δ = 0.002,0.005,0.010,0.020,
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Fig. 3 (colour online). Variation of energy eigenvalues as
function of screening parameter for various quantum states.

0.025,0.050 to obtain the energy eigenvalues of the
Hellmann potential for various states and compare
them with those ones obtained by other methods.
In Table 3, we show the numerical results with pa-
rameter δ = 0.01 for various b, and also we keep δ

constant at −10 and vary b in Table 4. Our numeri-
cal results are further compared with those obtained
by the findings of other screening parameter meth-
ods.

Table 5. Comparison of the calculated negative eigenvalues
(in a. u.) with the literature for the 2s states as functions of b
and δ .

b δ Present (AIM & NU) [19]
0.5 0.001 −0.0320005 −0.03174701400990
0.5 0.005 −0.035012500 −0.03367675354994
0.5 2 −3.5312500 −0.11290716132278
0.5 10 −57.53125000 −0.12339007950313
−0.5 0.001 −0.2815005 −0.28075099844730
−0.5 0.005 −0.282512500 −0.2787748073142
−0.5 2 −2.7812500 −0.14061295116700
−0.5 10 −52.78125000 −0.1268366598878
−2 0.001 −1.1245005 −1.12300199844620
−2 0.005 −1.122512500 −1.1150498066913
−2 2 −2.1250000 −0.20100449384560
−2 10 −46.12500000 −0.1342619146710
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In Table 5, we computed the energy eigenvalues for
the 2s state using three values of the parameter b, viz.,
0.5, −0.5, and −2, as a function of the screening pa-
rameter and then compare the results with those ob-
tained previously. It is worth to be noted here that our
results are only valid for low screening parameter. For
instance, when b = 0.5 and δ = 0.001, the local trun-
cation error (LTE) is 0.00025349. When increasing the
screening parameter, say δ = 0.005 (i. e. 5 times the
formal), the LTE increases to 0.0013 (i. e. approxi-
mately 5 times the formal LTE). This shows how sen-
sitive our results are to even a very small increment
in the screening parameter. Moreover, while increasing
the screening parameter to 2 and 10, it can be readily
seen that our results are not in agreement with the ones
obtained analytically. Hence, our approximation (14)
is valid only for a very low screening parameter.

In the case when the screening parameter δ → 0,
b = 0, and a = Ze2, the potential (1) reduces to an at-
tractive Coulomb potential field. Thus, in this limit the
energy formula (20) turns to become the energy levels
of the pure Coulomb interaction between electron and
nucleus, i. e.,

Enl =−µe4Z2

2h̄2n′2
, (29)

where n′ = n+ l +1 [30, 31].
In the case when a = 0 and b = −V0, the po-

tential (1) reduces to an attractive Yukawa potential
field [35, 52 – 54]. Thus, in this limit the energy for-
mula (20) turns to become the energy levels of the pure
Yukawa interaction, i. e.,

Enl =
h̄2l(l +1)δ 2

2µ
− h̄2

δ 2

8µ

·
[

l(l +1)−2µV0/(δh̄2)
(n+ l +1)

+(n+ l +1)
]2

.

(30)

To find corresponding wave functions, by using the
parametric constants Table 1 and (8), we find the ra-
dial wave functions as

Rnl(s) = s
√

ε+Λ−α(1− s)l+1

·P(2
√

ε+Λ−α,2l+1)
n (1−2s)

(31)

or more explicit by substituting s = e−δ r:

unl(r) = Nnl

(
e−δ r

)√ε+Λ−α

(1− e−δ r)l+1

·P(2
√

ε+Λ−α,2l+1)
n (1−2e−δ r) ,

(32)

where the normalization constant Nnl is obtained as

Nnl =

[(
δn!
√

ε +Λ −α

[
2n+2l +2

√
ε +Λ −α

]
Γ

(
n+2l +2+2

√
ε+Λ−α

))(
(n+ l +1)Γ (n+2l

+2)Γ (n+2
√

ε +Λ −α +1)
)−1

] 1
2

. (33)

4. Conclusion

In this work, we have obtained the bound state so-
lutions of the Schrödinger equation with the Hellmann
potential within the framework of the pNU and AIM
methods. The energy eigenvalues and the correspond-
ing wave functions are obtained. Some numerical re-
sults are given in Tables 2, 3, 4, and 5. The compar-
ison of numerical results with the findings of other
method proves the success of the formalism. It is worth
to be noted that we found exactly the same results
by using both pNU and AIM methods. This has been
shown numerically by Tables 2, 3, and 4. We also
found that when the screening parameter δ → 0, the
energy levels approach to the familiar pure Coulomb
potential energy levels. In the low screening region
where the screening parameter δ is small (i. e., δ � 1),
the potential reduces to the Killingbeck potential, i. e.,
V (r) = ar2 + br− c/r [32 – 34, 55], where a, b, and c
are potential constants that can be obtained after mak-
ing an expansion to the Hellmann potential. It can also
be reduced into the Cornell potential [56 – 59], i. e.,
V (r) = br−c/r. These two potentials are usually used
in the study of mesons and baryons. Further, when the
screening parameter approaches to zero, the Hellmann
potential turns to become the Coulomb potential.

Finally, the approximation we used in the present
work is only valid for a very low screening parameter
values.
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