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A steady two-dimensional boundary-layer flow and heat transfer of an upper convected Maxwell
fluid near a stagnation-point of a permeable shrinking sheet is studied numerically. The effects of
elasticity, shrinking, and suction parameters on the flow and heat transfer characteristics are investi-
gated. A similarity transformation reduces the governing equations to third-order nonlinear ordinary
differential equations which are then solved numerically. For a fixed value of elastic parameter, it
is found that dual solutions exist for some values of shrinking and suction parameters. The plotted
streamlines show that for upper branch solutions, the effects of shrinking and suction are direct and
obvious as the flow near the surface is seen to suck through the permeable sheet and drag to the origin
of the sheet. However, aligned but reverse flow occurs for the case of lower branch solutions.

Key words: Stagnation-Point Flow; Shrinking Sheet; Maxwell Fluid; Boundary Layer; Suction.

1. Introduction

Some industrial fluids such as polymeric fluids, slur-
ries, lubrication oils and greases, are capable of flow-
ing but demonstrate flow and heat transfer character-
istics which cannot be adequately described by the
classical Newtonian model. These fluids are named as
viscoelastic fluids, i.e. fluids which exhibit both vis-
cous and elastic characteristics that enable the fluids
keep memory of their past deformations. Many mod-
els have been suggested to describe the behaviours of
the viscoelastic fluids; one of them is the upper con-
vected Maxwell (UCM) fluid which takes into account
the stress relaxation that exists in the flow. There are
quite a number of studies on UCM fluids, however, not
many papers that deal with stagnation-point flow pub-
lished in open literature. In the history of fluid dynam-
ics, the study of stagnation-point flow in different type
of fluid medium has always become the focus inter-
est of many researchers. Although the stagnation-point
flow solution is valid in a small region in the vicinity of
the stagnation-point, it represents flow with engineer-

ing significance and the stagnation-point solution may
serve as a starting solution for the solution over the en-
tire body.

The plane and axisymmetric stagnation flow of
a Maxwell fluid has been studied by Phan-Thien [1].
Exact solutions, including inertia, to the above prob-
lem have been reported in that paper. Hayat etal. [2]
and Abbas etal. [3] solved the stagnation-point flow of
an UCM fluid over a stretching surface in the presence
of constant magnetic field and buoyancy force, respec-
tively, using the homotopy analysis method (HAM). In
addition, Abbas etal. [3] have also solved the prob-
lem numerically using a finite difference method and
then compared the results with the analytical solu-
tion by HAM. Recently, Hayat etal. [4] used the
HAM to study the influence of melting heat trans-
fer on stagnation-point flow of UCM fluid towards
a stretching sheet. They found that the local Nusselt
number is a decreasing function of the melting pa-
rameter. Also, Nadeem etal. [5] used HAM to solve
the problem of stagnation flow of a Maxwell fluid
over a shrinking sheet. All these four papers [2-5]
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found that elasticity decreases the boundary layer
thickness.

On the other hand, Sadeghy etal. [6] presented the
theory and results for two-dimensional boundary layer
stagnation-point flow of UCM fluids while Kumari
and Nath [7] studied the steady state magnetohydro-
dynamic (MHD) mixed convection flow of UCM flu-
ids near the stagnation-point. They found that there
is no velocity overshoot in the UCM model as found
by Beard and Walters [8] in second-grade fluids. Be-
sides, thickening of boundary layer and decreasing in
reduced skin friction coefficient f”(0) is predicted to
exist for the high elasticity number of the UCM model.
This prediction is controversial to those reported for
the Maxwell model used by Phan-Thien [1], Hayat
etal. [2, 4], Abbas etal. [3], and Nadeem etal. [5]. It
is further found that the papers by Sadeghy etal. [6]
and Kumari and Nath [7] considered different sign
of elasticity term as used in Hayat etal. [2, 4], Ab-
bas etal. [3], and Nadeem etal. [5]. It has to be men-
tioned here that the controversial and confusion over
viscoelastic model, specifically flow retardation, and
model approximation of the second-grade model has
been discussed in detail by Dunn and Rajagopal [9].
Also, Garg and Rajagopal [10] pointed out that the sign
adopted by Beard and Walters [8] and many other au-
thors for the elastic term should be reversed to com-
ply with thermodynamic constrain. We mention to this
end, that very recently Rajagopal [11] has generalized
the classical viscoelastic fluid model due to Maxwell
to allow the relaxation time and the viscosity to depend
on the stress.

Recently, the flow due to a stretching sheet has been
studied rigorously because of its important applica-
tions in industries such as manufacturing of polymer
sheets, filaments, and wires. During the manufacturing
process, the moving sheet is assumed to stretch on its
own plane and the stretched surface interacts with the
ambient fluid both mechanically and thermally. More
recently, the boundary layer flow due to a shrinking
sheet has gained considerable interest. In contrast to
a stretching sheet, for the shrinking case, the sheet is
shrunk towards a fixed point which would cause a ve-
locity away from the sheet. This phenomenon can be
found, for example, on a rising and shrinking balloon,
or a moving and shrinking polymer film. Wang [12]
was the first to study the unsteady viscous flow by
a shrinking film. The closed form exact solution of
the viscous flow with suction has been obtained by

Y. Y. Lok etal. - Stagnation-Point Flow and Heat Transfer Towards a Shrinking Sheet with Suction

Miklav¢i¢ and Wang [13] who found that the solutions
may not unique for certain suction rates. There are
two conditions for shrinking flow to exist physically,
i.e. either imposed adequate suction on the boundary
(Miklav¢i¢ and Wang [13]) or added stagnation flow
which contains the vorticity (Wang [14]). Since then,
many authors have extended the shrinking problem to
other fluid media with the imposition of either suction,
stagnation flow or both.

The aim of this study is to investigate the steady
two-dimensional stagnation-point flow of an upper
convected Maxwell fluid impinging on a permeable
shrinking sheet. As far as we are concerned, the prob-
lem of suction and shrinking effects in the vicinity of
stagnation point over UCM fluid has yet to be solved.
The applications of this study can be found in engi-
neering and industry fields, for example, the extrusion
of polymer sheet which immersed in a non-Newtonian
fluid as cooling liquid. This process adversely affects
the flow and heat transfer characteristics. In order to
control the flow so that the separation of flow does
not occur, we can impose the suction so that the ve-
locity of the fluid can be decreased (Saikrishnan and
Roy [15]; Roy and Saikrishnan [16]; Mukhopadhyay
and Layek [17]). There are also some other ways to
control the flow separation and control the velocity
and temperature profiles as well as the skin friction on
the interface. Out of many one can mention the recent
works by Shadloo et al. [18, 19] where they showed the
effect of MHD and micropolar fluids, respectively, in
order to control before mentioned flow properties.

In this paper, we follow the UCM model which was
used by Sadeghy etal. [6] and Kumari and Nath [7].
After applying the boundary layer approximations and
similarity transformation, the resulting nonlinear gov-
erning equations are solved numerically for some val-
ues of the governing parameters. Representative results
for the reduced skin friction or shear stress, reduced
heat transfer from the surface of the sheet, velocity,
and temperature profiles as well as the streamlines of
the stagnation-poinnt flow are presented.

2. Problem Formulation

Consider a steady stagnation-point flow and heat
transfer towards a permeable shrinking sheet in a UCM
fluid. It is assumed that the velocity of the stretching
or the shrinking sheet is u,,(x) = cx, while the flow
velocity outside the boundary layer (inviscid fluid) is
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u,(x) = ax, where a (> 0) and c are constants, with
¢ > 0 for a stretching sheet and ¢ < 0 for a shrinking
sheet. It is also assumed that the constant mass trans-
fer velocity is v,,, with v,, < 0 for suction and v,, > 0
for injection (withdrawal). Further, it is assumed that
the uniform temperature of the sheet is 7;,, while that
of the ambient fluid is T... Following Sadeghy etal. [6]
and Kumari and Nath [7], the continuity and momen-
tum boundary layer equations for the stagnation-point
flow of the UCM fluid are given by

gz-l—g;—o, (1)
du du du, 2%u
$+V87y—u “+vVv a 2‘|’k()
,d%u 282 d%u @
( o -5tV ﬁ+2 Vs ay).

In addition to these equations, we consider also the en-
ergy equation

ua—T-i-va—T —a—azT 3)
ox dy  dy?
along with the boundary conditions for the present
problem

u=uy(x), v=v,, T=T, at y=0 @

U—Ue(x), T —Tw as y — oo .

Here u and v are the velocity components along the x-
and y-axes, respectively, v is the kinematic viscosity,
ko is the relaxation time of the UCM fluid, and o is the
thermal diffusivity. We mention that (1) and (2) have
also been derived in the paper by Sadeghy etal. [20]
for the boundary layer flow of a UCM fluid past a mov-
ing surface. This equation generalizes the well-known
Sakiadis [21] problem for a viscous (Newtonian) fluid.

In order to solve (1)—(3) with the boundary con-
ditions (4), we consider the following similarity
variables:

_ 12 _(a 1/2

v =(va) "xf(n), n (v) Y,
6(n) = (T =T1)/(Ty — Ts),

where v is the stream function defined as u = dy/dy

and v = —dy/dx, which identically satisfies (1).

Thus, we have

u=axf'(n), v=

)

—Vvaf(n), (6)
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where the prime denotes differentiation with respect to
n. Substituting (5) into (2) and (3), we obtain the fol-
lowing nonlinear ordinary differential equations:

f///_|_ff//_|_1_f/2_|_K(f2f///_folfl/):07 (7)
1 " I _
50" +10'=0. (8)

The boundary conditions (4) now become

f0)=s, f(0)=
fm—1,

Here K = aky (> 0) is the dimensionless elastic pa-
rameter also known as Deborah or Weissenger num-
ber (Bird etal. [22]), Pr = v /o is the Prandtl number,
A = c¢/a is the stretching (A > 0) or shrinking (A < 0)
parameter, and s = —v,,/(av)'/? is the mass transfer
parameter with s > 0 for suction and s < O for injec-
tion. For K = s = A =0, (7) reduces to the classical
Hiemenz [23] problem.

S, 00)=1,
a 9)
0(n) —0 as N — eo.

3. Numerical Methods

Equations (7) and (8) subject to the boundary con-
ditions (9) have been solved numerically using the
Keller-box method for some values of the govern-
ing parameters, namely elastic parameter K, shrinking
parameter A, suction parameter s, and Prandtl num-
ber Pr. The Keller-box method is an implicit finite-
difference method with second-order accuracy. This
method involves four steps. First, by introducing new
dependent variables, the ordinary differential equa-
tions (7) and (8) were reduced to a first-order sys-
tem. Then, the system was expressed in finite dif-
ference forms using central difference. Next, the re-
sulting nonlinear algebraic equations were linearized
using the Newton linearization before and wrote them
in matrix—vector form. Lastly, the linear system was
solved by the block-tridiagonal-elimination method
which consists of forward sweep and backward sweep.
The detailed description of this numerical method
can be found in the books by Cebeci and Brad-
shaw [24] and Cebeci [25]. It has been success-
fully used by the present authors to solve various
boundary-value problems (cf. Lok etal. [26]; Ishak
etal. [27, 28]).

Before performing the computation, it is necessary
to make an initial guess for the initial profiles across
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Wang [14] Kimiaeifar etal. [29] Presentstudy ~ Table 1. Comparison of initial values f”(0)
A Integration & Homotopy 4th-order Keller-box when K = s = 0 for some values of 1.
shooting method Analysis Method, Runge—Kutta method
20th-order method

—-0.25 1.40224 1.402254441 1.40224078 1.40224
-0.5 1.49567 1.495670686 1.495671 1.49567
—0.75 1.48930 1.489335189 1.48933 1.48930
—1 1.32882 1.32888085 1.328824 1.32882
0 0.00000
—1.15 1.08223 1.08223
0.116702 0.11670
—-1.2 0.93247
0.23365
—1.2465 0.58430
0.55430 0.55428

the boundary layer. The selected initial values can be
arbitrary but they must satisfy the boundary condi-
tions (9). Besides, the boundary layer thickness N
needs to be determined in order to achieve the far
field boundary conditions asymptotically. The step size
An = 0.005 was found satisfactory for the numeri-
cal values to be mesh independent. Further, the it-
eration numerical procedures were repeated until the
final results satisfied the convergence criterion 1077,
For certain range of the shrinking and suction param-
eters, two solutions were found to exist by setting two
different values of the boundary layer thickness 7.
Both profiles satisfied the far field boundary condi-
tions asymptotically, but with different shapes. In gen-
eral, for the first (upper branch) solutions, the bound-
ary layer thickness set was between 3 and 6, while for
the second (lower branch) solutions, it was between 12
and 20.

‘| 4
0.8 1
= 0.6 1
Ng — Present result
~
0.4 1) Sadeghy et al. [6] i
' UCM fluid
» Kumariand Nath [7]
0.2 UCM fluid B
/\\ Beard &Walters [8]
0 Second-grade fluid
0 1 2 3 4 5 6
n

Fig. 1. Comparison of velocity profiles f/(n) at K =0.3, 1 =
s=0.

4. Results and Discussion

In order to verify our results, the values of the
reduced skin friction or reduced shear stress f(0)
with K = 0 (viscous or Newtonian fluid) and s = 0
(impermeable surface) have been computed. Table 1
shows the comparison of f”(0) with those obtained
by Wang [14] and Kimiaeifar etal. [29]. The results
are in very good agreement. The velocity profiles
f'(n) for K = 0.3 in the absence of suction param-
eter and shrinking effect are plotted in Figure 1 for
graphical comparison purpose. The compared profiles
are deduced from the velocity profiles published by
Beard and Walters [8], Sadeghy etal. [6], and Ku-
mari and Nath [7]. The results are found to be in
good agreement with those of Maxwell model consid-
ered by Sadeghy etal. [6] and Kumari and Nath [7],
but differ significantly with those of the second-grade

2.5

7"(0)

K=0.1,0.3,0.5

upper branch solution

0.5 lower branch solution

06 04 02 0
Fig. 2. Variation of f”(0) with the shrinking parameter A for
s = 0.5 and some values of K.
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0.7

K=0.1,0.3,0.5

upper branch solution

lower branch solution

-1 -0.8 -0.6 -0.4 -0.2 0
A

Fig. 3. Variation of —6’(0) with the shrinking parameter A
for s = 0.5, Pr = 0.7, and some values of K.

f(n)
S
(3]

-0.6 upper branch
solution
-0.8 k
W e lower branch
B solution
- 1 2 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Fig. 5. Effect of elastic parameter K on the velocity profiles
when A = —1.2and s =0.5.

A=-15,-14,-13,-12

S'(n)

upper branch
solution

.................. lower branch
solution

) 1 2 3 4 5 6 7 8

Fig. 7. Effect of shrinking parameter A on the velocity pro-
files when K = 0.1 and s = 0.5.

697

0.8

upper branch

solution
0.6

= |V NN e lower branch
I solution
0.4f R
Pr=100, 10, 2, 0.7
0.2 R
0

n

Fig. 4. Effect of Prandtl number Pr on the temperature pro-
files when K = 0.1, A = —1.2, and s = 0.5.

upper branch
osh solution
.................. lower branch
solution
0.6
=
RS
0.4 K=-02,-0.1,0,
0.1,0.3,0.5
0.2
K=-0.1,0.1,0.5
of ; , , . . -
0 1 2 3 4 5 7 8

Fig. 6. Effect of elastic parameter K on the temperature pro-
files when A = —1.2, s = 0.5, and Pr = 50.

1 i
upper branch
solution i
UL S lower branch |
solution
0.6 i
= A=-12,-13,
Sy -1.4,-1.5
0.4 i
21=0,-0.5,-1.2,
0.2 14,-15 1
0OF - ] R ) L L
0 I 2 3 4 5 6 7

Fig. 8. Effect of shrinking parameter A on the temperature
profiles when K = 0.1, s = 0.5, and Pr = 50.
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upper branch
solution g

/()

lower branch
solution

5 6 7

Fig. 9. Effect of suction parameter s on the velocity profiles
when K =0.1 and A = —1.2.

model (velocity overshoot) considered by Beard and
Walters [8].

In order to investigate the effect of governing pa-
rameters on the flow and heat transfer characteristics
of the present problem, the variations of f”(0) and re-
duced heat flux from the surface of the sheet —6’(0)
with the change in the shrinking parameter A are given
in Figures 2 and 3, respectively. It is observed that for
fixed Prandtl number (Pr = 0.7) and suction parameter
(s = 0.5), both f”(0) and —6’(0) decreases as elastic
parameter K increases. Figures 2 and 3 also show that
a unique solution is found for A > —1. Meanwhile, the
existence of dual solutions for the shrinking sheet case
is found when A. < A < —1, where the critical val-

1
upper branch
0.8} solution
""""" lower branch
"""""""""" solution
0.6
= 5=10,05,02
Y
0.4
s=15
0.2 s=2.0
k&zs =2.0,1.0,0.6,0.5
op . . . . T -
0 1 2 3 4 5 6 7

n

Fig. 10. Effect of suction parameter s on the temperature pro-
files when K = 0.1, A = —1.2, and Pr = 50.

ues of A are A, ~ —1.512, —1.498, and —1.482 for
K =0.1,0.3, and 0.5, respectively.

Figure 4 shows the effect of Prandtl number on the
dimensionless temperature profiles 6(7n) when K =
0.1, A = —1.2, and s = 0.5. These profiles are pre-
sented for Pr = 0.7, 2, 10, and 100. The profiles for
Pr > 100 are too close to the one of Pr = 100, therefore
there are not plotted in Figure 4. It has to be mentioned
here that it is difficult for us to obtain a converged so-
lution for very large Pr, we believed that another ap-
proach need to be used for finding an asymptotic limit
of large values of Pr.

Figures 5-10 present the velocity /(1) and tem-
perature 6(1) profiles obtained for the UCM fluid near

Fig. 11. Streamlines for upper branch solutions when K =
0.1,A=-1.2,and s =0.5.

Fig. 12. Streamlines for lower branch solutions when K =
0.1, A =—1.2,and s =0.5.
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a stagnation-point flow with the combination effects of
elastic, shrinking, and suction parameters. The profiles
are plotted for Pr = 50 and different values of K, A,
and s. From the upper branch solutions in Figures 5
and 6, the velocity f/(n) is found to decrease while
the temperature 6(n) is found to increases with in-
creasing K. An opposite trend is found for both pro-
files for the lower branch solutions. On the other hand,
the momentum boundary layer thickness increases as
the fluid elasticity increases; this is in agreement with
the findings by Sadeghy etal. [6] and Kumari and
Nath [7]. The increase in thermal boundary layer thick-
ness in Figure 6 is not significant by an increase in the
values of K. From the physical point of view, increase
in elastic parameter will increase the resistance of fluid
motion, which means the velocity will decrease and the
momentum boundary layer thickness will increase as
K increases.

The velocity profile f/(1) in Figure 7 shows that
the momentum boundary layer thickness decreases as
|A| increases, but the thermal boundary layer thickness
presented in Figure 8 shows the opposite trend. The ef-
fects of suction parameter s on the velocity and temper-
ature profiles when K =0.1, A = —1.2, and Pr =50 are
presented in Figures 9 and 10. Non-unique solutions
are obtained for suction (s > 0). For the upper branch
solution, the velocity gradient increases as s increases.
However, for the lower branch solution, a negative ve-
locity gradient is observed (back flow) near the shrink-
ing sheet and then gradually change to positive as the
distance from the sheet increases. Physically, the posi-
tive velocity gradient implies that the fluid exerts a drag
forces on the wall surface and a negative sign implies
the opposite.

Figures 11 and 12 show the symmetric stagnation
flow towards a shrinking sheet (A = —1.2) with suction
(s = 0.5) for the upper branch and the lower branch so-
lutions, respectively, where the dimensionless stream
function ¥ is defined as ¥ = y/(av)'/2. Because of
the shrinking effect, the flow is dragged to the origin
of the sheet whereas the effect of suction is obvious
in Figure 11 where the flow is pulled to the permeable
sheet. For the lower branch solution in Figure 12, the
streamlines are divided into three regions. The first up-
per region shows that the oncoming flows pass on both
sides, and the pattern is similar to normal stagnation-
point flow. In the second region, reverse rotating flow is
formed while in the lowest region, the flows are sucked
to the permeable sheet. However, the effect of shrink-
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ing to the lower branch solutions is not obvious since
the flow is not dragged significantly to the origin of the
sheet.

It is worth mentioning to this end that we define the
first solution as upper branch solution for which the
value of f”(0) is greatest (Riley and Weidman [30])
while the second solution is defined as lower branch
solution. The stability analysis of the dual solutions
of several boundary layer problems has been made by
Merkin [31], Weidman etal. [32], Harris etal. [33],
Postelnicu and Pop [34], and Rosca and Pop [35].
They revealed that the solutions along the upper branch
(first) solution are linearly stable and physically realiz-
able, whilst those on the lower branch (second) solu-
tion are linearly unstable and, therefore, physically not
realizable. Therefore, we postulate that this conclusion
is applicable also for the present problem. The stability
analysis of the present problem is out of the scope of
this paper.

5. Conclusions

The problem of stagnation-point flow and heat trans-
fer towards a permeable shrinking sheet which obeys
the UCM model was studied numerically. A similarity
transformation was employed to reduce the governing
partial differential equations into a system of ordinary
differential equations, before being solved numerically
by the Keller-box method. The effects of the govern-
ing parameters, namely elastic parameter K, shrinking
parameter A, and suction parameter s on the flow and
heat transfer characteristics were thoroughly examined
and discussed for some values of Prandtl number. Dual
solutions were obtained for some values of the shrink-
ing and suction parameters. Furthermore, it was found
that the range of K for which the solution exists de-
creases with increasing K. The streamline pattern of
the upper branch solutions are simpler and controllable
compared to the streamline pattern of the lower branch
solutions.
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