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The influence of electron exchange and quantum shielding on the elastic electron–ion collision is
investigated in degenerate quantum plasmas. The second-order eikonal method and effective screened
potential are employed to obtain the scattering phase shift and collision cross section as functions
of the impact parameter, collision energy, electron-exchange parameter, Fermi energy, and plasmon
energy. It is found that the electron-exchange effect enhances the eikonal scattering phase shift as well
as the eikonal collision cross section in quantum plasmas. The maximum position of the differential
eikonal collision cross section is found to be receded from the collision center with an increase of
the electron-exchange effect. It is interesting to note that the influence of the electron exchange on
the eikonal collision cross section decreases with increasing collision energy. It is also found that
the eikonal collision cross section decreases with an increase of the plasmon energy and, however,
increases with increasing Fermi energy.
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1. Introduction

The atomic processes in plasmas have received con-
siderable attention since these processes have been ex-
tensively used as plasma diagnostics to provide use-
ful information on various plasma parameters [1 – 7].
Especially, the elastic electron–ion collision has been
known as one of the most fundamental atomic colli-
sion processes in plasmas and also has provided use-
ful information on the collision system as well as
the characteristics of surrounding plasmas. Recently,
there has been a great interest in the investigation of
the physical properties of various quantum plasmas
since the quantum plasmas have been found in many
nanoscale objects in modern science and technology
such as nanowires, quantum dot, and semiconductor
devices as well as astrophysical plasmas in compact
objects [8 – 19]. It has been shown that the effective in-
teraction potential in weakly coupled classical plasmas
can be represented by the Debye–Hückel model [4, 20]
since the average interaction energy between plasma
particles is usually smaller than the average kinetic

energy of a particle. However, it would be expected
that the screened interaction potential in quantum plas-
mas would be quite different from the standard Debye–
Hückel potential due to the influence of the Bohm po-
tential and quantum statistical pressure caused by the
quantum-mechanical and multiparticle correlation ef-
fects in dense quantum plasmas [14, 15]. In addition
to the Bohm potential and quantum statistical pres-
sure effects, it has been shown by Shukla and Elias-
son [19] that the electron-exchange effect due to the
electron-1/2 spin plays a crucial role in the formation
of the electric potential and plasma dielectric func-
tion in quantum plasmas. However, the influence of
the electron-exchange and quantum shielding on the
elastic collision in quantum plasmas has not been in-
vestigated yet. Thus, in this paper, we investigate the
electron-exchange and quantum shielding effects on
the elastic electron–ion collision in degenerate quan-
tum plasmas. The second-order eikonal analysis [21]
and Shukla and Eliasson effective screened potential
with the impact parameter method are employed to
obtain the eikonal scattering phase shift and eikonal
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collision cross section as functions of the impact pa-
rameter, collision energy, electron-exchange parame-
ter, Fermi energy, and plasmon energy. The variation
of the electron-exchange and quantum screening ef-
fects on the eikonal scattering phase shift and eikonal
collision cross section in quantum plasmas is also dis-
cussed.

2. Eikonal Phase and Cross Section

For a given interaction potential V (r) in the
electron–ion collision system, the semiclassical
eikonal wave function ψE(r) = N(r)exp[iS(r)/h̄] for
the nonrelativistic Schrödinger equation would be
obtained by the Hamilton–Jacobi equation [22, 23]

H (∇S(r),r) =
1

2µ
[∇S(r)]2 +V (r) = E , (1)

where N(r) is the normalization factor, S(r) the ac-
tion function, and H (∇S(r),r) the Hamiltonian. µ is
the reduced mass of the collision system. It is E (=
h̄2k2/2µ) = µv2/2 the collision energy with k, h̄, and v
the wave number, the rationalized Planck constant, and
the collision velocity, respectively. In cylindrical coor-
dinates with the straight-line trajectory, the solution of
the Hamilton–Jacobi equation for the action function
S(r) would be represented by

S(r)/h̄∼= kiz−
µ

h̄2ki

∫ z

−∞

dz′V (z′,b) , (2)

where r = zn̂ + b. n̂ is the unit vector normal to the
momentum transfer q (≡ ki − kf), ki and kf are, re-
spectively, the incident and final wave vectors, and b
is the impact parameter. It has been known that the va-
lidity of the semiclassical eikonal method is known as
|V (R)|/E < 1 [21], where V is the typical strength of
the interaction potential, and R is the interaction range.
The semiclassical eikonal wave function ψE(r) would
be then represented by

ψE(r)∼= (2π)−
3
2 (3)

· exp

[
ikiz− i

µ

h̄2ki

∫ z

−∞

dz′V (z′,b)
]
.

Hence, the corresponding semiclassical eikonal scat-
tering amplitude fE(q) is obtained by the following in-
tegral representation:

fE(q) =− µ

2πh̄2

∫
d3r (4)

· exp

[
iq · r− i

µ

h̄2ki

∫ z

−∞

dz′V (z′,b)
]
V (r) .

Since the differential eikonal collision cross section is
determined by the relation dσE/dΩ =

∣∣∣ fE(q)
∣∣∣2, the to-

tal elastic eikonal collision cross section σE would be
then expressed by

σE(k) =
∫

d2b

∣∣∣∣exp

[
i
(

χ1(b)/k + χ2(b)/k3
)]
−1

∣∣∣∣2
= 2π

∫
dbb

∣∣∣∣exp
[

iχE(b,k)
]
−1

∣∣∣∣2 , (5)

where dΩ is the differential solid angle, k (≡ |ki| =
|kf|) is the elastic scattering wave number, χ1(b) and
χ2(b) are, respectively, the first- and second-order
eikonal scattering phase shifts [21]

χ1(b) =− µ

h̄2

∫
∞

−∞

dzV (z,b) , (6)

χ2(b) =
µ2

2h̄4

∫
∞

−∞

dz∇

[∫ z

−∞

dz′V (z′,b)
]

·∇
[∫

∞

z
dz′V (z′,b)

]
.

(7)

Then, the total eikonal scattering phase χE(b,k) using
the second-order eikonal method is found to be

χE(b,k) =− µ

h̄2k

∫
∞

−∞

dzV (r)

− µ2

4h̄4k3

∫
∞

−∞

dz

[
V (r)+ r

d
dr

V (r)
]
V (r) .

(8)

In the nonrelativistic quantum hydrodynamic
model [19], the continuity and momentum equations
for degenerate quantum plasmas are, respectively,
represented by

∂n
∂ t

+∇ · (nv) = 0 , (9)

∂v
∂ t

+ v ·∇v =− 1
mn

∇P+
e
m

∇ϕ

+
h̄2

2m2 ∇

(
∇2√n√

n

)
+

1
m

∇VXC ,

(10)

where n is the number density of the electron, v, m,
and P are, respectively, the velocity, the mass, and the
pressure of the electron. ϕ is the electric potential, and
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VXC is the electron-exchange potential. In the Shukla–
Eliasson model [19], the electron-exchange potential
VXC would be represented by VXC =−0.985e2n1/3[1+
(0.034/a0n1/3) ln(1 + 18.37a0n1/3)], where a0 (=
h̄2/me2) is the Bohr radius of the hydrogen atom.
It has been known that the quantum hydrodynamic
model would be quite useful to investigate the trans-
port process in nanoscience. In (10), the pressure
term is known as the quantum statistical effect due to
the fermionic behaviour of the plasma electrons, the
Laplacian operator term represents the Bohm poten-
tial effect due to the quantum-diffraction effect, and the
VXC term stands for the additional potential due to the
electron-exchange effect caused by the electron spin.
Very recently, Shukla and Eliasson [19] have obtained
an extremely useful expression of the plasma dielectric
function εSE in degenerate quantum plasmas including
the influence of the electron exchange and quantum
shielding with quasistationary density perturbations
such as ε

−1
SE = 1 + [(k2/k2

s )+ αk4/k4
s ]/[1 +(k2/k2

s )+
αk4/k4

s ], where ks
[
= ωp/(v2

F/3+ v2
ex)

1/2
]

represents
the inverse effective Thomas–Fermi screening length,
ωp is the electron plasma frequency, vF is the elec-
tron Fermi velocity, vex is the electron-exchange veloc-
ity associated with the electron-exchange effect, and α[
= h̄ω2

p /4m2(v2
F/3+ v2

ex)
2
]

is the quantum recoil pa-
rameter. It is also found that the effective electric po-
tential ϕSE(r) of a charge Q in quantum plasmas is
obtained by ϕSE(r) = (Q/2π2)

∫
d3k eik·r/k2εSE using

the Shukla and Eliasson plasma dielectric function εSE
when the plasmon energy Ep (= h̄ωp) is comparable
or smaller than the Fermi energy EF (= mv2

F/2) [19].
Using the effective electric potential model [19], the
Shukla and Eliasson effective interaction potential
VSE(r) between the projectile electron and target ion
with nuclear charge Ze in degenerate quantum plasmas
becomes

VSE(r) =−Ze2

2r

[
(1+ξ )exp(−k+r)

+(1−ξ )exp(−k−r)
]
,

(11)

where ξ ≡ (1 − 4α)−1/2 and the effective inverse
screening lengths k± are given by k± ≡ ks[1∓ (1−
4α)1/2]1/2/(2α)1/2. It can be shown that, in the limit
α → 0, the Shukla and Eliasson effective interac-
tion potential VSE(r) would be the modified Thomas–
Fermi screened Coulomb potential, i. e., VTF(r) =
−(Ze2/r)e−ksr since k+ → ks and k− → ∞ as α →

0. In dense semiclassical plasmas [17], the number
density n and temperature T are known to be about
1020 – 1024 cm−3 and 5 ·104 – 106 K. In addition, it has
been known that the physical properties of the dense
semiclassical plasma [17] would be expressed by the
plasma coupling parameter Γ [= (Ze)2/akBT ], de-
generacy parameter θ (= kBT/EF), density parame-
ter rs (= a/a0), where a is the average distance be-
tween plasma particles. After some mathematical ma-
nipulations using the Shukla and Eliasson effective
interaction potential VSE(r) and the impact parame-
ter analysis with the identity of the jth-order mod-
ified Bessel function of the second kind, K j(η) =
[π1/2/( j − 1/2)!](η/2) j ∫ ∞

1 dt e−ηt(t2 − 1) j−1/2, the
total eikonal scattering phase shift χE (b̄, Ē, ĒF, Ēp,β )
obtained by the second-order eikonal method is found
to be

χE
(
b̄, Ē, ĒF, Ēp,β

)
=

1

Ē1/2

{[
1+ξ (ĒF, Ēp,β )

]
·K0

[
k̄+
(
ĒF, Ēp,β

)
b̄
]
+
[
1−ξ (ĒF, Ēp,β )

]
·K0

[
k̄−(ĒF, Ēp,β )b̄

]}
+

1

8Ē3/2

{[
1+ξ (ĒF, Ēp,)

]2

· k̄+

(
ĒF, Ēp,β

)
K0

[
2k̄+(ĒF, Ēp,β )b̄

]
+
[
1−ξ

2(ĒF, Ēp,β
)][

k̄+(ĒF, Ēp,β )

+ k̄−(ĒF, Ēp,β )
]
×K0

[
k̄+
(
ĒF, Ēp,β

)
b̄

+ k̄−
(
ĒF, Ēp,β

)
b̄
]
+
[
1−ξ

(
ĒF, Ēp,β

)]2

· k̄−
(
ĒF, Ēp,β

)
K0

[
2k̄−(ĒF, Ēp,β )b̄

]}
,

(12)

where b̄ (≡ b/aZ) is the scaled impact parameter, aZ

(= a0/Z) is the Bohr radius of the hydrogenic ion with
nuclear charge Ze, Ē (≡ µv2/2Z2Ry) is the scaled
collision energy, Ry (= me4/2h̄2 ≈ 13.6 eV) is the
Rydberg constant, ĒF (≡ EF/Z2Ry) is the scaled Fermi
energy, Ēp (≡ Ep/Z2Ry) is the scaled plasmon energy,
β (≡ vex/vF) stands for the electron-exchange param-
eter, ξ (ĒF, Ēp,β ) = [1−4α(ĒF, Ēp,β )]−1/2, the quan-
tum recoil parameter is represented by α(ĒF, Ēp,β ) =
(3Ēp/4ĒF)2(1 + 3β 2)−2, the scaled shielding parame-
ters k̄±(ĒF, Ēp,β ) in degenerate quantum plasmas are

given by k̄±(ĒF, Ēp,β )(≡ k̄±aZ) = k̄s(ĒF, Ēp,β )
{

1∓

[1 − 4α(ĒF, Ēp,β )]1/2
}1/2

/[2α(ĒF, Ēp,β )]1/2, and

k̄s(ĒF, Ēp,β )(≡ k̄saZ) = [(3Ē2
p/4ĒF)/(1+3β 2)]1/2. If
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α → 0, i. e., the case of the Thomas–Fermi screened
Coulomb interaction, i. e., VTF(r) = −(Ze2/r)e−ksr,
the total eikonal phase shift is obtained by
χ ′E = (2/Ē1/2)K0(k̄sb̄) + (1/2Ē3/2)k̄sK0(2k̄sb̄)
since the shielding distance is determined by k−1

s .
Hence, the scaled differential eikonal collision cross
section ∂ σ̄E[≡ (dσE/db̄)/πa2

Z ] in units of πa2
Z for the

elastic electron–ion collision including the electron
exchange and quantum shielding is obtained by

∂ σ̄E
(
b̄, Ē, ĒF, Ēp,β

)
= 2b̄

∣∣∣∣exp

{
i

Ē1/2[[
1+ξ (ĒF, Ēp,β )

]
K0
[
k̄+(ĒF, Ēp,β )b̄

]
+[1−ξ (ĒF, Ēp,β )]K0[k̄−

(
ĒF, Ēp,β

)
b̄]
]

+
i

8Ē3/2

[[
1+ξ

(
ĒF, Ēp,β

)]2
k̄+
(
ĒF, Ēp,β

)
·K0
[
2k̄+(ĒF, Ēp,β )b̄

]
+
[
1−ξ

2(ĒF, Ēp,β )
]

·
[
k̄+(ĒF, Ēp,β )+ k̄−(ĒF, Ēp,β )

]
·K0
[
k̄+(ĒF, Ēp,β )b̄+ k̄−(ĒF, Ēp,β )b̄

]
+
[
1−ξ

(
ĒF, Ēp,β

)]2
k̄−
(
ĒF, Ēp,β

)
·K0[2k̄−

(
ĒF, Ēp,β

)
b̄]
]}
−1

∣∣∣∣2 .

(13)

As shown in (13), the electron-exchange effect on
the electron–ion collision process in quantum plas-
mas has been explicitly included through the pa-
rameter β in the effective shielding parameters
k̄± as well as the quantum recoil parameter α .
For the Thomas–Fermi screened Coulomb interac-
tion case VTF(r) = −(Ze2/r)e−ksr, i. e., α → 0, the
scaled differential eikonal collision cross section is
then found to be ∂ σ̄ ′E = 2b̄|exp[(2i/Ē1/2)K0(k̄sb̄) +
(i/2Ē3/2)k̄sK0(2k̄sb̄)] − 1|2. Hence, the scaled total
eikonal cross section σ̄E (≡ σE/πa2

Z) in units of πa2
Z

for the elastic electron–ion collision in degenerate
quantum plasmas including the influence of the elec-
tron exchange and quantum shielding is obtained by
the following integral form:

σ̄E
(
Ē, ĒF, Ēp,β

)
= 2

∫ [(1+3β 2)/(3Ē2
p /4ĒF)]1/2

0
(14)

· db̄b̄

∣∣∣∣exp

{
i

Ē1/2

[[
1+ξ (ĒF, Ēp,β )

]
·K0
[
k̄+
(
ĒF, Ēp,β

)
b̄
]
+
[
1−ξ

(
ĒF, Ēp,β

)]
·K0
[
k̄−
(
ĒF, Ēp,β

)
b̄
]]

+
i

8Ē3/2

[[
1+ξ

(
ĒF, Ēp,β

)]2

· k̄+
(
ĒF, Ēp,β

)
K0
[
2k̄+
(
ĒF, Ēp,β

)
b̄
]

+
[
1−ξ

2(ĒF, Ēp,β
)][

k̄+
(
ĒF, Ēp,β

)
+ k̄−

(
ĒF, Ēp,β

)]
·K0
[
k̄+
(
ĒF, Ēp,β

)
b̄+ k̄−

(
ĒF, Ēp,β

)
b̄
]

+
[
1−ξ

(
ĒF, Ēp,β

)]2
k̄−
(
ĒF, Ēp,β

)
·K0
[
2k̄−
(
ĒF, Ēp,β

)
b̄
]]}
−1

∣∣∣∣2 ,

where the upper limit of the integration is given by
[(1 + 3β 2)/(3Ē2

p/4ĒF)]1/2 since the effective shield-
ing length in quantum plasmas can be determined by
the Fermi wave length. In order to explicitly investi-
gate the electron exchange and quantum shielding ef-
fects on the elastic electron–ion collision process in
degenerate quantum plasmas, we consider the energy
domain Ē > 1 since the second-order eikonal method
is known to be valid for high-energy projectiles such
as v > Zα f c [21], where α f (= e2/h̄c ≈ 1/137) is the
fine structure constant and c is the speed of light. Re-
cent years, several excellent investigations have pro-
vided the extremely useful effective interaction po-
tentials to obtain electron–atom, electron—ion, and
ion–atom interactions in dense semiclassical plasmas
taking into accounts the symmetry and plasma de-
generacy effects as well as quantum-mechanical and
plasma screening effects [24 – 26]. However, the sym-
metry effect on the elastic electron–ion collision has
not been considered in this work since the investiga-
tion of the electron exchange and quantum shielding
on the elastic collision process is the main purpose of
this work. The general thermodynamic Green’s func-
tion approach for the scattering phase shifts can be
found in an excellent work of Schmidt and Röpke [27].
In addition, a recent excellent work has provided use-
ful information on the scattering phase shifts for the
electron–atom interaction using the cluster-virial ex-
pansion with the Beth–Uhlenbeck approach [26]. It
has been shown that one of the most important ef-
fects in quantum plasmas is the Pauli blocking ef-
fect. The influence of the Pauli blocking is not con-
sidered in this work since the investigation of the
electron-exchange effect on the elastic electron–ion
collision in degenerate quantum plasmas is the main
purpose of this work. However, the investigation of
the influence of the Pauli blocking on the elastic
electron–ion collision in degenerate quantum plasmas
will be treated elsewhere by using the generalized
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Beth–Uhlenbeck formula described in a recent excel-
lent work of Omarbakiyeva, Fortmann, Ramazanov,
and Röpke [26].

3. Results and Discussions

Figure 1 represents the total eikonal scattering phase
shift χE for the elastic electron–ion collision in quan-
tum plasmas including the influence of the electron
exchange and quantum shielding as a function of the
scaled impact parameter b̄ for various values of the
electron-exchange parameter β . From this figure, it is
shown that the eikonal scattering phase shift χE de-
creases with an increase of the impact parameter b̄
and increases with increasing electron-exchange pa-
rameter β . Hence, we have found that the electron-
exchange effect enhances the eikonal scattering phase
shift χE for the elastic electron–ion collision in quan-
tum plasmas. This expression of the total eikonal scat-
tering phase shift χE would be quite reliable for the
energy domain Ē > 1 due to the domain of the eikonal
method. Figure 2 shows the scaled differential eikonal
collision cross section ∂ σ̄E [≡ (dσE/db̄)/πa2

Z] in units
of πa2

Z for the elastic electron–ion collision includ-
ing the electron exchange and quantum shielding ef-
fects as a function of the scaled impact parameter b̄
for various values of the electron-exchange parame-
ter β . As it is seen, it is found that the differential
eikonal collision cross section ∂ σ̄E increases with an
increase of the electron-exchange parameter β . It is

0 1 2 3 4 5
b
–

0

2

4

6

8

χ E

Fig. 1 (colour online). Total eikonal scattering phase shift
χE for the elastic electron–ion collision as a function of the
scaled impact parameter b̄ for various values of the electron-
exchange parameter β when Γ θrs = 3.33, Ē = 3, ĒP = 0.08,
and ĒF = 0.6. Solid line: β = 0; dashed line: β = 0.5; dotted
line: β = 1; dot-dashed line: β = 1.5.

also shown in Figure 2 that the maximum position of
the differential eikonal collision cross section ∂ σ̄E is
found to be receded from the collision center with in-
creasing electron-exchange effect. We can understand
that the effective inverse screening length k+ and pa-
rameter ξ would be decreased and, however, the ef-
fective inverse screening length k− would be increased
with an increase of the electron-exchange effect so that
the influence of the electron exchange weakens the
electron–ion interaction in quantum plasmas. Hence,
we have found that the influence of the electron ex-
change shifts the maximums for the differential eikonal
collision cross section and also broadens the domain
of the elastic electron–ion collision process in degen-
erate quantum plasmas. As we expect that the expres-
sion of the differential eikonal collision cross ∂ σ̄E is
also quite reliable for the energy range Ē > 1 due
to the applicability of the second-order eikonal anal-
ysis. Figure 3 represents the scaled total eikonal col-
lision cross section σ̄E (≡ σE/πa2

Z) in units of πa2
Z

for the elastic electron–ion collision in quantum plas-
mas as a function of the scaled collision energy Ē for
various values of the electron-exchange parameter β .
As shown in Figure 3, it is found that the electron-
exchange effect enhances the total eikonal collision
cross section σ̄E. It is also found that the influence
of the electron exchange on the total eikonal collision
cross section σ̄E decreases with an increase of the col-
lision energy Ē. Thus, we can expect that the electron-
exchange effect on the electron–ion collision process

b
–

0 10 20 30 40 50
0

5

10

15

20

25

∂σ–
E

Fig. 2 (colour online). Scaled differential eikonal collision
cross section ∂ σ̄E in units of πa2

Z for the elastic electron–
ion collision as a function of the scaled impact parameter b̄
when Γ θrs = 3.33, Ē = 5, ĒP = 0.08, and ĒF = 0.6. Solid
line: β = 0; dashed line: β = 0.5; dotted line: β = 1; dot-
dashed line: β = 1.5.
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E
–

σ– E

3 4 5 6 7 8 9 10
0

200

400

600

800

Fig. 3 (colour online). Scaled total eikonal collision cross
section σ̄E in units of πa2

Z for the elastic electron–ion col-
lision as a function of the scaled collision energy Ē when
Γ θrs = 3.33, ĒP = 0.08 and ĒF = 0.6. Solid line: β = 0;
dashed line: β = 0.5; dotted line: β = 1; dot-dashed line: of
β = 1.5.

would be more effectively investigated in the interme-
diate domain of the collision energy. Figure 4 repre-
sents the surface plot of the scaled total eikonal colli-
sion cross section σ̄E for the elastic electron–ion col-
lision as a function of the scaled plasmon energy Ēp
and electron-exchange parameter β . From this figure,
it is found that the eikonal collision cross section σ̄E
decreases with an increase of the plasmon energy Ēp.
It is also found that the plasmon energy effect on the
elastic electron–ion collision process decreases with

0.06

0.07

0.08

0.09

0.1
0

0.5

1

1.5

2

0

500

1000

1500

0
ß

E
–
P

σ–
E

Fig. 4 (colour online). Surface plot of the scaled total eikonal
collision cross section σ̄E for the elastic electron–ion col-
lision as a function of the scaled plasmon energy ĒP and
electron-exchange parameter β when Γ θrs = 3.33, Ē = 5,
and ĒF = 0.6.

increasing electron-exchange parameter β . In addition,
the dependence of the electron-exchange effect in the
total eikonal collision cross section σ̄E is found to be
more significant when the exchange velocity is greater
than the Fermi velocity. Figure 5 shows the surface plot
of the scaled total eikonal collision cross section σ̄E
for the elastic electron–ion collision as a function of
the scaled Fermi energy ĒF and electron-exchange pa-
rameter β . As it is seen from Figure 5, it is found that
the eikonal collision cross section σ̄E increases with
increasing Fermi energy ĒF. In addition, it is found
that the Fermi energy effect on the total eikonal col-
lision cross section increases with an increase of the
electron-exchange effect. Hence, we have also under-
stood that the influence of the Fermi energy on the elas-
tic electron–ion collision process in quantum plasmas
would be more effectively explored in intermediate β

domains. Moreover, the dependence of the electron-
exchange effect in the eikonal collision cross section
σ̄E is found to be more effective when ĒF > 0.5. In
this work, we have found that the influence of the elec-
tron exchange and quantum shielding plays an impor-
tant role on the elastic electron–ion collision process in
quantum plasmas. These results would provide useful
information on the physical characteristics of the col-
lision processes in quantum plasmas and also on the
physical properties of degenerate quantum plasmas in-
cluding the electron exchange and quantum shielding
effects.
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Fig. 5 (colour online). Surface plot of the scaled total eikonal
collision cross section σ̄E for the elastic electron–ion colli-
sion as a function of the scaled Fermi energy ĒF and electron-
exchange parameter β when Ē = 5 and ĒP = 0.08.
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