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In this work, we consider a nonlinear SEIR (susceptible, exposed, infectious, and removed) en-
demic model, which describes the dynamics of the interaction between susceptible and infected in-
dividuals in a population. The model represents the disease evolution through a system of nonlinear
differential equations with variable infectivity which determines that the infectivity of an infected
individual may not be constant during the time after infection. To control the spread of infection
and to find a vaccination schedule for an endemic situation, we use optimal control strategies which
reduce the susceptible, exposed, and infected individuals and increase the total number of recovered
individuals. In order to do this, we introduce the optimal control problem with a suitable control func-
tion using an objective functional. We first show the existence of an optimal control for the control
problem and then derive the optimality system. Finally the numerical simulations of the model is
identified to fit realistic measurement which shows the effectiveness of the model.
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1. Introduction

We take into account that the infectivity of an in-
fected individual may not be constant during the time
after infection. Already the variable infectivity in SIR
(susceptible, infected, and recovered) epidemic model
has been considered by Kermack and McKendrick
(1927–1939). In their model with variable infectivity,
I is the infected population size, not to be confused
with the infectious population size, which means that
it is not discriminated whether an infected individual
is infectious or not. To discriminate that, the class E
of exposed individuals is taken into account by several
authors, see for example [1, 2].

Nowadays, due to the large mobility of people
within a community or even world wide, the risk of
being infected by a virus is relatively higher than sev-
eral years ago. That is why it is interesting to elab-
orate mathematical models of the evolution of dis-
eases in order to develop strategies to reduce the

impact of the outbreak. Thus we introduce the op-
timal control problem with a suitable control func-
tion using an objective functional. In our control
strategies, we reduce the susceptible, exposed, and
infected individuals and increase the total number
of recovered individuals. We first show the exis-
tence of the optimal control problem and then de-
rive the optimum system. Finally the numerical sim-
ulations of the model are identified to fit realistic
measurements which shows the effectiveness of the
model.

The structure of this paper is organized as follows.
The formulation of the SEIR endemic model is given
in Section 2, which represents the dynamics of the dis-
ease. A control system for the optimum and its exis-
tence and the optimal control pairs are derived in Sec-
tion 3 and in Section 4, a realistic application of our op-
timal control approach is given. Finally, we conclude
by discussing results of the numerical simulation for
our endemic model.
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mailto:madadmath@yahoo.com


678 G. Zaman et al. · Optimal Vaccination of an Endemic Model with Variable Infectivity and Infinite Delay

2. An Infection-Age Structured SEIRSEIRSEIR Endemic
Model

In this section, we introduce another independent
variable b ≥ 0 (infection age) denoting the time that
has passed since infection. The rate σ at which a sus-
ceptible individual catches the disease from an infec-
tious individual (per unit of time) is now a function of
the infection age b, i. e.,

σ = σ(b) .

The class of infected individuals is stratified according
to infection age such that

i(t,b)

denotes the infection age density of the infected indi-
viduals at time t with infection age b. Particularly,∫ b2

b1

i(t,b)db

gives the number of infected individuals with an in-
fection age between b1 and b2. Let B(t) be the input
into the infected class at time t. Prescribe the proba-
bility P(b) of not being removed (i. e., neither yet dy-
ing nor leaving the infected stage alive) at infection
age b, where P : [0,∞) → [0,1] is the sojourn func-
tion of the infected stage [3], i. e., P is non increas-
ing and P(0) = 1. Then i(t,b) can be expressed as fol-
lows:

i(t,b) =

{
B(t−b)P(b) , t > b≥ 0 ,

i0(b− t) P(b)
P(b−t) , b > t ≥ 0 ,

(1)

where i0(b) is the age density of individuals that are in
the stage at time 0. The first equation means individ-
uals with infection age b at time t > b having entered
the stage at time t−b. The second equation means in-
dividuals with infection age b at t < b and having the
infection age b− t at time 0.

We split up the host population into susceptible,
exposed, infectious, and removed individuals whose
numbers are denoted by S, E, I, and R. We consider
nonfatal diseases without vertical infection and assume
that the per capita mortality rate of S, E, I, and R is the
same constant, denoted by ν > 0. When standard inci-
dence adopted for infection, the susceptible population
size S at time t is modelled by

dS
dt

= birth−νS(t)−

∫
∞

0
σ(b)i(t,b)S(t)db

N(t)
,

where N(t) is the total size of the host population
(N(t) = S(t) + E(t) + I(t) + R(t)). Note that I(t) =∫

∞

0 i(t,b)db. The input into the exposed class is the in-
cidence of the disease, i. e., the rate of infection, for an
endemic model, is∫

∞

0
σ(b)i(t,b)S(t)db

N(t)
.

So, the exposed population size E at time t is modelled
by

dE
dt

=

∫
∞

0
σ(b)i(t,b)S(t)db

N(t)
− (η +ν)E(t) ,

where the per capita transition rate from the class E to
the class I are assumed to be constant and is denoted
by η .

The input B(t) into the infectious class equals
ηE(t). Then, by (1),

i(t,b)
P(b)

=

{
ηE(t−b) , t > b≥ 0 ,
i0,(b−t)
P(b−t) , b > t ≥ 0 ,

is differentiable for t 6= b if i0/P is differentiable, and
satisfies the partial differential equation

∂

∂ t
i(t,b)
P(b)

+
∂

∂b
i(t,b)
P(b)

= 0 , t 6= b .

From (1) and P(0) = 1, we have the boundary condi-
tion

i(t,0) = B(t) ,

and the initial condition

i(0,b) = i0(b) .

Furthermore, assume that i0 and P are differentiable.
Then i is differentiable for t 6= b and

0 =
(∂/∂ t)i(t,b)

P(b)
+

(∂/∂b)i(t,b)
P(b)

− i(t,b)
P′(b)

(P(b))2 .

Multiplying this equation by P and assuming that the
per capita rate of leaving the infected stage alive is con-
stant and let us denoted it by µ , so we obtain
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∂

∂ t
i(t,b)+

∂

∂b
i(t,b)+(µ +ν)i(t,b) = 0 , t 6= b ,

because µ +ν =−P′(b)/P(b) [3, Chapter 12], (1) can
be recovered from this equation [3, Chapter 13]. Since
the input of the removed stage is the output of the in-
fected stage (i. e., the rate at which individuals leave
the infected stage alive), which is µI(t), the removed
population size R at time t is modelled by

dR
dt

= µI(t)−νR(t) .

Assuming a simplest case where the per capita birth
rate equals the per capita mortality rate, we end up with
the following equations:

dS
dt

= νN(t)−νS(t)−

∫
∞

0
σ(b)i(t,b)S(t)db

N(t)
,

dE
dt

=

∫
∞

0
σ(b)i(t,b)S(t)db

N(t)
− (η +ν)E(t) ,

I(t) =
∫

∞

0
i(t,b)db ,

∂

∂ t
i(t,b)+

∂

∂b
i(t,b)+(µ +ν)i(t,b) = 0 , t 6= b ,

dR
dt

= µI(t)−νR(t) ,

(2)

with the initial and boundary conditions given as

S(0) > 0 , E(0)≥ 0 , R(0)≥ 0 ,

i(t,0) = ηE(t) , i(0,b) = i0(b) .

In order to ensure the existence of solutions of (2)
with the initial and boundary conditions, let

W (t) =
∫

∞

0
σ(b)i(t,b)db .

Integrating (2), we have the following system of inte-
gral equations:

S(t) =
∫ t

0

[
νN(t−b)−S(t−b)W (t−b)

N(t−b)

]
e−νbdb+f1(t) ,

E(t) =
∫ t

0

S(t−b)W (t−b)
N(t−b)

e−(η+ν)b db+ f2(t) ,

I(t) =
∫ t

0
ηE(t−b)e−(µ+ν)b db+ f3(t) ,

W (t) =
∫ t

0
σ(b)ηE(t−b)e−(µ+ν)b db+ f4(t) ,

R(t) =
∫ t

0
µI(t−b)e−νb db+ f5(t) ,

(3)

where

f1(t) = S(0)e−νt , f2(t) = E(0)e−(η+ν)t ,

f3(t) =
∫

∞

t
i0(b− t)e−(µ+ν)t db ,

f4(t) =
∫

∞

t
σ(b)i0(b− t)e−(µ+ν)t db ,

f5(t) = R(0)e−νt .

Applying standard fixed-point arguments, see for ex-
ample Gripenberg et al. [4], to (3), we easily show that
there exists a nonnegative solution of (3) on [0,∞) for
f j ∈ L1,loc[0,∞) ( j = 1,2,3,4), the space of functions
that are integrable on every finite interval in [0,∞). In
particular, if N(t) is a constant, then we see that the
nonnegative solution uniquely exists, i. e., the model is
well-posed.

3. Optimal Control Strategies

Optimal control deals with the problem of finding a
control law for a given system such that a certain opti-
mality criterion is achieved [5 – 9]. In order to get that
goal, we investigate an effective strategy to control dis-
eases cause infection on an endemic model which sat-
isfies that the maximum number of infected individu-
als is not larger than that of susceptible individuals and
more individuals are recovered after infection. To con-
trol both the susceptible and infected individuals, we
consider the model presented in Section 2.

In system (2), we have four state variables S(t),
E(t), I(t), and R(t). For the optimal control problem,
we consider the control variable u(t)∈U relative to the
state variables (S(t),E(t), I(t),R(t)), where U = {u ∈
L∞(0,T )|0 ≤ u(t) ≤ K < ∞,∃K > 0, t ∈ [0,T ]}, says
an admissible control set. The physical meaning of the
control variable in this problem is that low levels of the
number of infected, exposed, and susceptible individu-
als build. In case of no vaccination (or treatment), the
number of infected and exposed individuals increases
while the number of recovered individuals decreases.
Prefect time of vaccination brings the number of both
exposed and infected individuals to a small level, sus-
ceptible individuals begin to build again, and more in-
dividuals are recovered from infection.

The effects of infection on susceptible, exposed, and
infected individuals are negative for recovered individ-
uals around them, so we wish to minimize them. Also
small amount of control variable vaccination is accept-
able, therefore, we wish to penalize for amount too
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large, so quadratic terms for control variable will be
analyzed. Hence, our optimal control problem which
minimize the objective functional, is given by

J(u) =
∫ T

0

(
S(t)+E(t)+ I(t)+

A1u2(t)
2

)
dt (4)

subject to

dS
dt

= νN(t)− (ν +u(t))S(t)−

∫
∞

0
σ(b)i(t,b)S(t)db

N(t)
,

dE
dt

=

∫
∞

0
σ(b)i(t,b)S(t)db

N(t)
− (η +ν)E(t) ,

∂

∂ t
i(t,b)+

∂

∂b
i(t,b)+(µ +ν)i(t,b) = 0 , t 6= b ,

dR
dt

= µI(t)−νR(t)+u(t)S(t) ,

(5)

where I(t) =
∫

∞

0 i(t,b)db, with the initial and boundary
conditions given as

S(0) > 0 , E(0)≥ 0 , R(0)≥ 0 , (6)

i(t,0) = ηE(t) , i(0,b) = i0(b) . (7)

Here A1 is a positive constant (balance factor) that rep-
resents a patient’s level of acceptance of the vaccina-
tion or treatment. The aim of this work is to minimize
the susceptible, exposed, and infected individuals and
to maximize the total number of recovered individual
by using the possible minimal control variables u(t).
Susceptible individuals induce an optimal control vac-
cination u(t) before the infection.

Remark 1. In the optimal control problem, the objec-
tive functional did not explicitly depend on the state
variable. However there are situations where we might
wish to take it into consideration. Also there are vari-
ous possibilities of fixing the position of the state at the
beginning or at the end of the time interval or both but
the objective functional could depend only on the final
or initial position.

Theorem 1. There exists an optimal control variable
u∗ ∈U such that

J(u∗) = min
u∈U

J(u) ,

subject to the control system (5) with the initial and
boundary conditions (6) and (7), respectively.

Proof. To prove the existence of an optimal control,
we have to show the following.
1. The control and state variables are nonnegative val-

ues.
2. The control U set is convex and closed.
3. The right hand side of the state system is bounded

by linear function in the state and control variables.
4. The integrand of the objective functional is concave

on U .
5. There exist constants such that the integrand in (4)

of the objective functional is satisfied.
In order to verify these conditions, we use a result

by Lukes [10]. We note that the solutions are bounded
and the set of all the control variables u(t) ∈U is also
convex and closed by definition. The optimal system
is bounded which determines the compactness needed
for the existence of the optimal control. In addition, the
integrand in the functional S(t)+ E(t)+ I(t)+ A1u2(t)

2
is convex on the control set U . Also we can easily see
that there exist a constant σ > 1 and positive numbers
ω1 and ω2 such that

J(u)≥ ω2 +ω1(|u|2)σ/2

which completes the existence of an optimal control.

To derive necessary optimality conditions, we use
the Gâteaux derivative rule [11]. Given a control u, and
we consider another control uε = u + εv, where v is
a variation function and 1 > ε > 0. Let S = S(u), E =
E(u), I = I(u), R = R(u), and Sε = S(uε), Eε = E(uε),
Iε = I(uε), R = R(uε). Then the state equations corre-
sponding to controls uε is given as

dSε(t)
dt

= νN(t)− (ν +uε(t))Sε(t)

−

∫
∞

0
σ(b)iε(t,b)Sε(t)db

N(t)
, (8)

dEε(t)
dt

=

∫
∞

0
σ(b)iε(t,b)Sε(t)db

N(t)
− (η +ν)E(t) ,

∂

∂ t
i(t,b)+

∂

∂b
iε(t,b)+(ν + µ)iε(t,b) = 0 , t 6= b ,

dRε(t)
dt

= µIε(t)−νRε(t)+u(t)Sε(t) ,

with Iε(t) =
∫

∞

0 iε(t,b)db. Now, we find the difference
quotient such that Sε−S

ε
and similarly for E, I, i, and
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R to get the corresponding state system for both sys-
tems (5) and (7). For a given control variable u in Uad
where Uad represents an admissible control, fix a v in
Uad such that u+εv∈Uad [12]. Subtracting system (5)
from (7), we get

d
dt

(
Sε(t)−S(t)

ε

)
=−(ν +uε(t))

Sε(t)−S(t)
ε

−

∫
∞

0 σ(b)
(

iε (t,b)−i(t,b)
ε

)(
Sε (t)−S(t)

ε

)
db

N(t)
,

d
dt

(
Eε(t)−E(t)

ε

)
=
(∫

∞

0
σ(b)

(
iε(t,b)− i(t,b)

ε

)
·
(

Sε(t)−S(t)
ε

)
db

)(
N(t)

)−1
− (η+ν)

Eε(t)−E(t)
ε

,

∂

∂ t

(
iε(t,b)− i(t,b)

ε

)
+

∂

∂b

(
iε(t,b)− i(t,b)

ε

)
=

− (ν + µ)
(

iε(t,b)− i(t,b)
ε

)
, (9)

d
dt

(
Rε(t)−R(t)

ε

)
= µ

Iε(t)− I(t)
ε

−ν
Rε(t)−R(t)

ε

+u(t)
Sε(t)−S(t)

ε
.

We assume that ε → 0, Sε → S, and Sε−S
ε
→ S̄, and

similarly for E(t), I(t), i(t,b), and R(t), we obtain ī
and R̄, respectively, and get

dS̄(t)
dt

=−(ν +u(t))S̄(t)− v(t)S(t)− S̄(t)
N(t)

·
∫

∞

0
σ(b)i(t,b)db− S(t)

N(t)

∫
∞

0
σ(b)ī(t,b)db ,

dĒ(t)
dt

=
S̄(t)
N(t)

∫
∞

0
σ(b)i(t,b)db (10)

+
S(t)
N(t)

∫
∞

0
σ(b)ī(t,b)db− (η +ν)Ē(t) ,

∂ ī(t,b)
∂ t

+
∂ ī(t,b)

∂b
=−(µ +ν)ī(t,b) ,

dR̄(t)
dt

= µ Ī(t)−νR̄(t)+u(t)S̄(t)+ v(t)S(t) .

In order to find the adjoint equations, we can write
the first equation of the above system as

0 =

〈
dS̄(t)

dt
+(ν +u(t))S̄(t)+

S̄(t)
N(t)

∫
∞

0
σ(b)i(t,b)db

+
S(t)
N(t)

∫
∞

0
σ(b)ī(t,b)db+ v(t)S(t),λ1(t)

〉

=

〈
S̄(t),−λ

′
1(t)+(ν +u(t))λ1(t)+

λ1(t)
N(t)

·
∫

∞

0
σ(b)i(t,b)db

〉
+
∫ T

0

∫
∞

0
σ(b)ī(t,b)

· S(t)λ1(t)
N(t)

dbdt−
∫ T

0
v(t)S(t)λ1(t)dt ,

(11)

where 〈a,b〉=
∫ T

0 abdt, and ′ represents the derivative
with respect to time, with

lim
ε→0

iε(0,b)− i(0,b)
ε

= ī0(b) = 0 ,

S̄0 = 0 , λ1(T ) = 0 , Ī(t) =
∫

∞

0
ī(t,b)db .

(12)

From the second equation, with the given boundary
condition

0 =

〈
dĒ(t)

dt
− S̄(t)

N(t)

∫
∞

0
σ(b)i(t,b)db− S(t)

N(t)

·
∫

∞

0
σ(b)ī(t,b)db+(η +ν)Ē(t),λ2(t)

〉

=

〈
Ē(t),−λ

′
2(t)+(η +ν)λ̄2(t)−

λ2(t)
N(t)

·
∫

∞

0
σ(b)i(t,b)db

〉
+
∫ T

0

∫
∞

0
σ(b)ī(t,b)

S(t)λ2(t)
N(t)

dbdt ,

(13)

From the third equation, with the boundary condition

ī(t,0) =
S̄(t)
N(t)

∫
∞

0
σ(b)i(t,b)db

+
S(t)
N(t)

∫
∞

0
σ(b)ī(t,b)db ,

(14)

we get

0 =

〈〈
∂ ī(t,b)

∂ t
+

∂ ī(t,b)
∂b

+(µ+ν)ī(t,b),λ3(t,b)
〉〉

=

〈〈
ī(t,b),−∂λ3(t,b)

∂ t
− ∂λ3(t,b)

∂b
(15)
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+(µ +ν)λ3(t,b)

〉〉
−
∫ T

0

∫
∞

0

(
S̄(t)
N(t)

σ(b)i(t,b)

+
S(t)
N(t)

σ(b)ī(t,b)
)

λ3(t,0))dbdt

with

ī(0,b) = 0 , ī(t,∞) = 0 , λ3(T,b) = 0 , (16)

where 〈〈 f ,g〉〉 =
∫ tend

0

∫
∞

0 f (t,b)g(t,b)dbdt. Similarly
from the fourth equation of system (10), we obtain

0 =

〈
dR̄(t)

dt
−
∫

∞

0
ī(t,b)db+νR̄(t)

−u(t)S̄(t)− v(t)S(t),λ4(t)

〉
(17)

=

〈
R̄(t),− dλ4(t)

dt
+νλ4(t)

〉
+
〈

S̄(t),−u(t)λ4(t)
〉

−
∫ T

0

∫
∞

0
ī(t,b)λ4(t)dbdt−

∫ T

0
v(t)S(t)λ4(t)dt

with

R̄(0) = 0 , λ4(T ) = 0 . (18)

We derive the Gateaux derivative of J(u) as

0 6 J′(u)v =
∫ tend

0

(
S̄(t)+ Ē(t)+ Ī(t)

+A1u(t)v(t)
)

dt .
(19)

Now we combine (12), (15), (17), and (19) with some
rearrangement to obtain the adjoin system which is
given by

λ
′
1(t) = (ν +u(t))λ1(t)+

p(t)
N(t)

∫
∞

0
σ(b)i(t,b)db

− λ3(t,0)
N(t)

∫
∞

0
σ(b)i(t,b)db−u(t)λ4(t)−1 ,

λ
′
2(t) = (η +ν)λ2(t)+

λ1(t)
N(t)

∫
∞

0
σ(b)i(t,b)db

− λ3(t,0)
N(t)

∫
∞

0
σ(b)i(t,b)db−1 , (20)

∂λ3(t,b)
∂ t

+
∂λ3(t,b)

∂b
= (µ +ν)λ3(t,b)

+
σ(b)S(t)

N
λ1(t)−

σ(b)S(t)
N

λ3(t,0)−µ(b)λ4(t)−1 ,

λ
′
4(t) = νλ4(t)

with transversality conditions (or boundary conditions)

λ1(T ) = 0 , λ2(T ) = 0 ,

λ3(T,b) = 0 , λ4(T ) = 0 .
(21)

Theorem 2. If u∗ in Uad is an optimal control pair
minimizing (4) and (S?,E?, I?,R?) and (λ1,λ2,λ3,λ4)
are the corresponding state and adjoint variables, re-
spectively, then

u∗(t) = min

{
k,max

{
0,

(λ1(t)−λ4(t))S?(t)
A1

}}
.

Proof. Since u∗ is an optimal control, so we have

0≤ lim
ε→0

J(uε)− J(u)
ε

(22)

=
1
ε

∫ T

0

((
Sε(t)+Eε(t)+ Iε(t)+

A1uε(t)2

2

)
−
(

S(t)+E(t)+ I(t)+
A1u2(t)

2

))
dt

=
1
ε

∫ T

0

(
(Sε(t)−S(t))+(Eε(t)−E(t))

+(Iε(t)− I(t))+
A1

2
(uε(t)2−u2(t))

)
dt

=
∫ T

0

(
S̄(t)+ Ē(t)+ Ī(t)+A1v(t)u(t)

)
dt

=
∫ T

0

(
S̄(t)(−λ

′
1(t)+(ν +u(t))λ1(t)

+
λ1(t)

N

∫
∞

0
σ(b)i(t,b)db−u(t)λ4(t)

− λ3(t,0)
N

∫
∞

0
σ(b)i(t,b)db)+ Ē(t)(−λ

′
2(t)

+(η +ν)λ̄2(t)−
λ2(t)
N(t)

∫
∞

0
σ(b)i(t,b)db

+
∫ T

0

∫
∞

0
σ(b)ī(t,b)

S(t)λ2(t)
N

dbdt)

+ Ī(t)
(
− ∂λ3(t,b)

∂ t
− ∂λ3(t,b)

∂b
+(µ +ν)λ3(t,b)

+
σ(b)λ1(t)S(t)

N
− 1

N
σ(b)S(t)λ3(t,0)−µλ4(t)

)
−νλ4(t)+A1v(t)u(t))

)
dt

=
∫ tend

0
v(t)(S(t)(λ4(t)−λ1(t))+A1u(t))dt ,
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for all v ∈Uad . We simplify further to obtain∫ tend

0
v(t)(S(t)(λ4(t)−λ1(t))+A1u(t))dt ≥ 0 . (23)

Thus on this set, in the case when v(t) 6= 0, the rest of
the integrand must be zero so that

u(t) =
S(t)(λ1(t)−λ4(t))

A1
. (24)

Hence, by taking the upper and lower bound into ac-
count, we obtain

u∗(t) = min

{
k,max

{
0,

(λ1(t)−λ4(t))S?(t)
A1

}}
. (25)

Here the formula (25) represents the characterization
of the optimal control.

The optimal control and the state are found by solv-
ing the optimum system, which consists of the state
system (5), the adjoint system (20), boundary condi-
tions (6) and (21), and the characterization of the op-
timal control (25). To solve the optimum system, we
use the initial and transversality conditions together
with the characterization of the optimal control vari-
able u∗(t) given by (25). By substituting the value of
u∗(t) in the control system (5), we get the following
optimal control system:

dS∗(t)
dt

= νN(t)− S?

N(t)

∫
∞

0
σ(b)i∗(t,b)(t)db

−
(

µ+min

{
k,max

{
0,

(λ1(t)−λ4(t))S?(t)
A1

}})
S?(t) ,

dE∗(t)
dt

=
S?

N(t)

∫
∞

0
σ(b)i∗(t,b)(t)db− (η +ν)E∗

∂ i∗(t,b)
∂ t

+
∂ i?(t,b)

∂b
=−(µ +ν)i?(t,b) , (26)

dR∗(t)
dt

=
∫

∞

0
µ(b)i∗(t,b)db−νR?(t)

+min

{
k,max

{
0,

(λ1(t)−λ4(t))S?(t)
A1

}}
S?(t) .

To find out the optimal control and state, we will
numerically solve systems (20) and (26) with the given
initial and boundary conditions. In the next section, we
present numerical results for the optimum system by
using an iterative method.

4. Numerical Results and Discussion

In this section, we demonstrate numerically that
the model formulated in terms of variable infectivity
and control variable decrease the infection of diseases.
To achieve this, a program is developed in MATLAB
to integrate the optimum system, and the output was
comprehensively verified using a detailed output from
a number of runs. In this work, we obtain the optimum
system from the state and adjoint equations. The opti-
mal control problem strategy is obtained by solving the
optimum system which consists of six ordinary differ-
ential equations and boundary conditions. Our choice
of numerical method is the forward time/backward
space finite difference method [13]. Starting with an
initial guess for the adjoint variables, the state equa-
tions are solved by a forward time and backward space
finite difference method. Then those state values are
used to solve the adjoint equations by a backward time
and forward space finite difference method because of
the transversality conditions. For the convenience of
the reader, we recall the scheme for the simpler case of
the wave equation

∂ω

∂ t
+φ

∂ω

∂x
= Ψ(x, t) , (27)

where φ is a constant, and Ψ is a function depend upon
space and time, t and x represent the time and space,
respectively. The forward time and backward space
scheme for the above problem is

ωn+1
m −ωn

m

∆t
−φ

ωn
m−ωn

m−1

∆x
= Ψ(xm, tn) , (28)

where n denotes the time index and m the space index
in the grid.

To control in both the susceptible and infected indi-
viduals, we use a control variable in the form of vacci-
nation. We consider the treatment for 20 days because
the long treatment in the form of medication has poten-
tially harmful side effect and the best time of vaccina-
tion is the possible early stage of diseases. We use a set
of parameter value ν = 0.25, η = 0.06, σ(0) = 0.05,
and A1 = 0.91. We consider the real data used in [9, 14]
for individuals S(0) = 153, S(0) = 79, and R(0) = 68
with i(0,b) = 0 and assume that S(0) ≥ L(0) = 120
to determine the numerical simulation of the optimum
system with a small time step size ∆t = 0.05.

In Figure 1, we plot the susceptible individual in (2)
and (5). The solid line denotes the population of sus-
ceptible individuals in (2) without control while the
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Fig. 1 (colour online). Population of susceptible individuals
S with and without control.
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Figure2. Solution profile of infected individuals for time t=0.6
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Fig. 3 (colour online). Solution profile of infected individuals
with and without control for time t = 0.6.

plan line denotes the population of susceptible individ-
uals in (5) with control. The population of susceptible
individuals sharply decrease in the first 2 – 3 days be-
cause the maximum number of exposed and infected
individuals occurs within that period of time. Figure 2
represents the exposed individuals in (2) and (5). The
number of exposed individuals sharply increase at the
first few days and then decreases slightly and reach
at its minimum number E = 64 and E∗ = 56 at the
end of control. The solid line denotes that there are
more exposed individuals when the control (treatment)
is not implemented to the system which shows that
the disease spread in a community and more suscep-
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Figure4. Optimal control in exposed individuals
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Fig. 2 (colour online). Population of exposed individuals E
with and without control.
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Figure3. Solution profile of infected individuals for age b=0.5
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Fig. 4 (colour online). Solution profile of infected individuals
with and without control for age t = 0.5.

tible individuals move to exposed individuals. Figure 3
and 4 represent solution profiles of infected individu-
als in (2) without control and (5) with control for time
t = 0.6 and age b = 0.5, respectively. The solid line de-
notes that there are more infectious individuals when
the control (treatment) is not implemented to the in-
fected individuals. The solution profile of infected in-
dividuals for time t = 0.6 shows that the infected indi-
viduals sharply increase from the first day of infection
in systems both with control (treatment) and without
control (treatment) and reach at its maximum number
of infected individuals i(0.6,2.5) = 78 on day 2.30 and
i∗(0.6,2.5) = 79. After that period of time, the number
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Fig. 5 (colour online). Population of recovered individuals R
with and without control.

of infected individuals is stable around days 2.5 – 19
and then decrease until the control vanishes. The solu-
tion profiles in Figure 3 and 4 represent that the control
is more effective in the first few days.

Figure 5 represents the recovered individuals in (2)
and (5). We initiate optimal control in the form of treat-
ment in (5). At the first day of control, about 23 recov-
ered individuals more sharply increase than the indi-
viduals without control. Thus the rate of susceptible,
exposed, and infected individuals decrease after the
control (treatment) and so more individuals are recov-
ered. The maximum number of recovered individuals

at the end of control are R = 249 and R∗ = 268, re-
spectively, as can be seen in Figure 5.

In this paper, the model is identified to fit realis-
tic measurements which represents the effectiveness of
the model and shows good agrement compared to the
model without time and age infectivity.

5. Concluding Remarks

In this work, we introduced a system of nonlinear
differential equations with variable infectivity which
determine that infected individuals may not be con-
stant during the time after infection. To decrease the
infection rate, we used optimal control theory in the
form of vaccination to minimize the susceptible and
infected individuals and maximize the recovered in-
dividual. New controlled models are developed from
the numerical simulation of the optimum system which
represents the change in each individual of the com-
munity. We also pointed out that for certain values of
control rate there exists its corresponding optimal so-
lution. Moreover we considered the time limit of the
vaccination to avoid the possible harmful side effect of
the long treatment. Finally, we presented the efficiency
of this optimal control theory. We considered a special
disease in a specific community as a realistic model,
and we hope that the approach introduced in this paper
will be applicable in other endemic models beyond the
SEIR model.
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