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General solutions for the magnetohydrodynamic (MHD) natural convection flow of an incompress-
ible viscous fluid over a moving plate are established when thermal radiation, porous effects, and slip
condition are taken into consideration. These solutions, obtained in closed-form by Laplace transform
technique, depend on the slip coefficient and the three essential parameters Gr, Preff, and Keff. They
satisfy all imposed initial and boundary conditions and can generate a large class of exact solutions
corresponding to different fluid motions with technical relevance. For illustration, two special cases
are considered and some interesting results from the literature are recovered as limiting cases. The
influence of pertinent parameters on the fluid motion is graphically underlined.
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1. Introduction

Free convection flow over a moving vertical plate
is extensively studied in the literature due to its wide
applications in different engineering and environmen-
tal processes. It is also of great interest in industrial
applications, and different investigations have been
performed using analytical or numerical methods un-
der different thermal conditions. The first exact solu-
tions for the free convection flow of an incompress-
ible viscous fluid past an impulsively started vertical
plate seem to be those of Soundalgekar [1] and In-
gham [2]. The free convection flow of such a fluid
past an accelerated vertical plate has been later studied
by Soundalgekar and Gupta [3], Raptis and Singh [4]
and Singh and Kumar [5]. The influence of a mag-
netic field on the flow was also taken into consid-
eration by Rapthis and Singh. This type of flow has
large applications in polymer industry and metallurgy.
On the other hand, flows through porous media also
have numerous engineering and geophysical applica-
tions, and problems of free convection and heat transfer
through such media under the influence of a magnetic
field have attracted the attention of many researchers.

The most recent analytical solutions for such flows
seem to be those of Toki [6], Rajesh [7], Narahari and
Ishak [8], Seth et al. [9], Samiulhaq et al. [10, 11] and
Fetecau et al. [12]. However, in all these papers the
possibility of fluid slippage at walls is not taken into
consideration.

The phenomenon of slippage on the solid boundary
appears in many applications and attracted the atten-
tion of many researchers. Khaled and Vafai [13] es-
tablished exact solutions for the second problem of
Stokes under slip condition. Mansour et al. [14] stud-
ied the magnetohydrodynamic (MHD) free convection
flow of a micropolar fluid through a porous medium
with periodic temperature and slip condition. Recently,
Hamza et al. [15] brought to light the influence of mag-
netic field, radiative heat transfer, and slip condition on
the unsteady flow of a viscous fluid through a channel
filled with a porous medium and with an oscillating
temperature on the boundary. The solutions that have
been obtained are important since they help us to see if
the wall slip has significant effects on the fluid velocity
or it can be neglected.

The aim of this work is to provide general exact so-
lutions for the unsteady MHD natural convection flow
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of an incompressible viscous fluid over a moving in-
finite plate with radiative heat transfer and slip condi-
tion. The viscous dissipation is neglected but porous
effects are taken into consideration. The dimensionless
governing equations are solved using Laplace trans-
forms and exact solutions for temperature and veloc-
ity are established in integral forms in terms of three
essential parameters only (effective Prandtl number
Preff, Grashof number Gr, and the effective perme-
ability number Keff). In order to illustrate the theoret-
ical and practical value of general solutions, two spe-
cial cases are considered and some known results from
the literature are recovered as limiting cases. Finally,
the influence of the slip parameter on the fluid mo-
tion, as well as the effects of pertinent parameters on
the dimensionless velocity, is graphically underlined.
The required time to reach the thermal steady-state in
the case of oscillatory heating of the boundary is also
determined.

2. Statement of the Problem

Let us consider the flow of an incompressible elec-
trically conducting viscous fluid over an infinite ver-
tical plate embedded in a porous medium. A uniform
transverse magnetic field B0 acts perpendicular to the
plate. Initially, at time t = 0, both the fluid and plate are
at rest at the constant temperature T∞. At time t = 0+,
the plate starts to move in its plane with a variable ve-
locity U f0(t), and its temperature is raised or lowered
to the value T∞ +Twh0(t). The functions f0(·) and h0(·)
are piecewise continuous and f0(0) = h0(0) = 0. We
also take into consideration the possibility of fluid slip-
page at the wall. More precisely, the relative velocity
between the fluid at the wall and the wall is assumed to
be proportional to the shear rate at the wall.

The x-axis of the coordinate system is taken along
the plate in the upward direction and the y-axis is
normal to the plate. The induced magnetic field pro-
duced by the fluid motion is assumed to be negligi-
ble in comparison with the applied one. The radiative
heat flux along the plate is also negligible in compar-
ison to the y-direction. The plate is electrically non-
conducting and all physical quantities, excepting the
pressure, are functions of y and t only. Bearing in mind
the above assumptions, neglecting the viscous dissipa-
tion and using the usual Boussinesq’s approximation,
the equations governing the laminar natural convection
flow of an incompressible viscous fluid are [9]

∂u(y, t)
∂ t

= ν
∂ 2u(y, t)

∂y2 −
(

σB2
0

ρ
+

ν

K

)
u(y, t)

+gβ
[
T (y, t)−T∞

]
; y, t > 0 ,

(1)

ρcp
∂T (y, t)

∂ t
= k

∂ 2T (y, t)
∂y2 − ∂qr(y, t)

∂y
; y, t > 0 , (2)

where u, T , ν , σ , ρ , K, g, β , cp, k, and qr are, respec-
tively, the velocity of the fluid, temperature, kinematic
viscosity, electrical conductivity, fluid density, perme-
ability of the porous medium, gravitational accelera-
tion, volumetric coefficient of thermal expansion, spe-
cific heat at constant pressure, thermal conductivity,
and the radiative heat flux.

By adopting the Rosseland approximation for the
radiative heat flux qr [9, Eq. (4)] and assuming small
temperature difference between the fluid temperature
T and the free stream temperature T∞, (2) becomes

∂T (y, t)
∂ t

=
k

ρcp

(
1+

16σ∗T 3
∞

3kk∗

)
∂ 2T (y, t)

∂y2 ; y, t > 0 , (3)

where k∗ is the mean absorption coefficient and σ∗ is
the Stefan–Boltzmann constant. The appropriate initial
and boundary conditions are

u(y,0) = 0 , T (y,0) = T∞ ; y≥ 0 , (4)

u(0, t)−α
∂u(y, t)

∂y

∣∣∣∣
y=0

= U f0(t) ,

T (0, t) = T∞ +Twh0(t) ; t ≥ 0 ,

(5)

u(y, t)→ 0 , T (y, t)→ T∞ as y→ ∞ , (6)

where α ≥ 0 is the slip coefficient. The negative val-
ues of α , as it results from [13], do not correspond to
physical cases.

Introducing the following non-dimensional quanti-
ties

y∗ =
U
ν

y , t∗ =
U2

ν
t , u∗ =

u
U

, T ∗ =
T −T∞

Tw
,

M∗ =
νσB2

0

ρU2 , K∗ =
U2

ν2 K , α
∗ =

U
ν

α ,

Gr =
νgβTw

U3 , Pr =
µcp

k
, Nr =

16σ∗T 3
∞

3kk∗
,

f (t∗) = f0

(
νt∗

U2

)
, h(t∗) = h0

(
νt∗

U2

)
(7)

and dropping out the star notation, we obtain the next
non-dimensional initial-boundary value problem:
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∂ 2u(y, t)
∂y2 − ∂u(y, t)

∂ t
−Keffu(y, t)

+GrT (y, t) = 0; y, t > 0 ,

(8)

∂ 2T (y, t)
∂y2 −Preff

∂T (y, t)
∂ t

; y, t > 0 , (9)

u(y,0) = 0 , T (y,0) = 0; y≥ 0 , (10)

u(0, t)−α
∂u(y, t)

∂y

∣∣∣∣
y=0

= f (t) ,

T (0, t) = h(t) ; t ≥ 0 ,

(11)

u(y, t)→ 0 , T (y, t)→ 0 as y→ ∞ , (12)

where Gr and Pr are Grashof and Prandtl numbers, Nr
is the radiation-conduction parameter, Keff = M+1/K,
and Preff = Pr/(1 + Nr) is the effective Prandtl num-
ber [16, Eq. (10)].

It is worth pointing out that the fluid velocity u(y, t)
does not depend on the magnetic and permeability pa-
rameters M and K, independently, but only by a com-
bination of them Keff that can be called the effective
permeability. Consequently, the study of a fluid motion
through a porous medium with or without magnetic ef-
fects is practically the same problem and a ‘two param-
eter approach’ is superfluous. The velocity of the fluid
is the same for an infinite set of values of parameters
M and K which correspond to the same effective per-
meability Keff.

3. Solution of the Problem

In the following, the solutions of partial differen-
tial equations (8) and (9), with the initial and bound-
ary conditions (10) – (12), will be determined by means
of Laplace transforms. The energy equation (9) is not
coupled to the momentum equation (8). Therefore,
we shall firstly establish the exact solution for the
temperature.

3.1. Temperature Distribution

Applying the Laplace transform to (9) and (11)2 and
using the initial condition (10)2, we find that

∂ 2T̄ (y,q)
∂y2 = PreffqT̄ (y,q) , T̄ (0,q) = h̄(q) ;

T̄ (y,q)→ 0 as y→ ∞ ,

(13)

where T̄ (y,q) and h̄(q) are the Laplace transforms of
T (y, t) and h(t), respectively, and q is the transform pa-
rameter. The solution of the problem (13) is

T̄ (y,q) = h̄(q)exp
(
−y
√

Preffq
)

. (14)

Taking the inverse Laplace transform of (14) and
using (A1) from the Appendix and the convolution the-
orem, we find for the temperature T (y, t) the integral
expression

T (y, t) =
y
√

Preff

2
√

π

∫ t

0

h(t− s)
s
√

s
exp

(
−Preffy2

4s

)
ds . (15)

Equation (15) can be written in the equivalent form

T (y, t) =
2√
π

∫
∞

y
√

Preff
2
√

t

h

(
t− Preffy2

4s2

)
e−s2

ds , (16)

from which the boundary condition (11)2 is clearly sat-
isfied. In order to determine the Nusselt number, which
is a measure of the surface heat transfer rate, we use the
equality

∂T (y, t)
∂y

=
√

Preff

2
√

π

∫ t

0

h(t− s)
s
√

s
exp

(
−Preffy2

4s

)
ds

−
√

Preff√
π

∫ t

0

h(t− s)√
s

Preffy2

4s2 exp

(
−Preffy2

4s

)
ds ,

(17)

resulting from (15), and integrate by parts the second
integral. Direct computations show that

∂T (y, t)
∂y

=−h(0)
√

Preff√
πt

exp

(
−Preffy2

4t

)
−
√

Preff√
π

∫ t

0

h′(t− s)√
s

exp

(
−Preffy2

4s

)
ds .

(18)

Because h(0) = 0, it clearly results that

Nu =−∂T (y, t)
∂y

∣∣∣∣
y=0

=
√

Preff√
π

∫ t

0

1√
s

h′(t− s)ds . (19)

3.2. Calculation of the Velocity Field

Applying the Laplace transform to (8) and using the
corresponding initial and boundary conditions, we ob-
tain the next problem for ū(y,q):

∂ 2ū(y,q)
∂y2 − (q+Keff) ū(y,q)

+GrT̄ (y,q) = 0; y > 0 ,

(20)

ū(0,q)−α
∂ ū(y,q)

∂y

∣∣∣∣
y=0

= f̄ (q) ;

ū(y,q)→ 0 as y→ ∞ ,

(21)
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where T̄ (y,q) is given by (14). The solution of this
problem is

ū(y,q) =
[

f̄ (q)−Grh̄(q)ā(q)
]
b̄(y,q)

+Grh̄(q)c̄(y,q) ,
(22)

where

ā(q) =
1+α

√
Preffq

q(1−Preff)+Keff
,

b̄(y,q) =
exp(−y

√
q+Keff)

1+α
√

q+Keff
, and

c̄(y,q) =
exp(−y

√
Preffq)

q(1−Preff)+Keff
.

In order to obtain the (y, t)-domain solution, we
need the inverse Laplace transforms of the functions
ā(q), b̄(y,q), and c̄(y,q). Writing ā(q) in the suitable
form

ā(q) =
1

1−Preff

1
q+d

+
α
√

Preff

1−Preff

q1/2

q+d
,

d =
Keff

1−Preff
for Preff 6= 1

and using (A2) (see also [17]), we find that

a(t) = L−1 {ā(q)}=
1

1−Preff
e−dt

+α

√
Preff

1−Preff

1√
t
E1,1/2(−dt) .

(23)

Here Em,n(z) = ∑
∞
k=0

zk

Γ (km+n) , with m > 0 and n > 0, is
the Mittag–Leffler function [18].

The inverse Laplace transform of b̄(y,q), namely

b(y, t) =
1

α
√

πt
exp

(
−y2

4t
−Kefft

)
− 1

α2 exp

(
y
α

+
t

α2 −Kefft

)
erfc

(
y

2
√

t
+
√

t
α

)
,

(24)

is obtained using (A3) and the properties (A4) from
Appendix.

Finally, in view of (A5), it results that

c(y, t) =
e−dt

2(1−Preff)

[
ey
√
−dPreff erfc

(
y
√

Preff

2
√

t
(25)

+
√
−dt

)
+ e−y

√
−dPreff erfc

(
y
√

Preff

2
√

t
−
√
−dt

)]
,

while the velocity field u(y, t) can be presented in the
simple form

u(y, t) =
∫ t

0
f (t− s)b(y,s)ds−Gr

∫ t

0

∫ s

0
h(t− s) (26)

·a(s− τ)b(y,τ)dτ ds+Gr
∫ t

0
h(t− s)c(y,s)ds ,

where a(t), b(y, t), and c(y, t) are given by (23) – (25).
Neglecting the thermal effects, the velocity field re-
duces to

um(y, t) =
∫ t

0
f (t− s)b(y,s)ds . (27)

3.3. Solution in the Case of no-slip Condition (the
Case α = 0)

Equations (15) or (16) and (26) provide solutions
in integral form for the fluid temperature and velocity
corresponding to the flow with slip boundary condi-
tion. In order to underline the effects of the slippage on
the fluid flow, we need the velocity field corresponding
to α = 0. It can be obtained starting again from (22)
with ā0(q) = 1

q(1−Preff)+Keff
and b̄0(y,q) = e−y

√
q+Keff

instead of ā(q) and b̄(y,q).
The inverse Laplace transform of ā0(q) can be di-

rectly obtained making α = 0 into (23), while the in-
verse Laplace transform b0(y, t) of b̄0(y,q), namely

b0(y, t) =
y

2t
√

πt
exp

(
−y2

4t
−Kefft

)
, (28)

can be obtained using (A1) and the first shift property
of the Laplace transform (see the property (A4)1). The
corresponding velocity field is

u0(y, t) =
∫ t

0
f (t− s)b0(y,s)ds−Gr

∫ t

0

∫ s

0
h(t− s)

·a0(s− τ)b0(y,τ)dτ ds+Gr
∫ t

0
h(t− s)c0(y,s)ds , (29)

where c0(y, t) = c(y, t) and a0(t) = e−dt/(1− Preff).
The second term of this solution can be further sim-
plified using a result obtained in [19] and given here
by (A6). Indeed, in view of (A6), we have

L−1 {ā0(q)b0(y,q)}= (a0 ∗b0)(t) =
e−dt

2(1−Preff)

·
[

ey
√
−Preff derfc

(
y

2
√

t
+
√
−Preff dt

)
+ e−y

√
−Preff d

· erfc

(
y

2
√

t
−
√
−Preff dt

)]
, (30)
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where the star notation denotes the convolution prod-
uct.

In the absence of thermal effects, our solution (29)
becomes

u0m(y, t) =
y

2
√

π

∫ t

0

f (t− s)
s
√

s

· exp

(
−y2

4s
−Keffs

)
ds .

(31)

In view of an important remark resulting from [20,
Eq. (35) with α = 0] (namely, for such motions of
Newtonian fluids the shear stress satisfies the same par-
tial differential equation as does the velocity), it is clear
that our last result is in accordance with a known result
from [12]. Indeed, the non-dimensional shear stress

τm(y, t) =
∂um(y, t)

∂y

=
y

2
√

π

∫ t

0

f (t− s)
s
√

s
exp

(
−y2

4s
−Kps

)
ds ,

(32)

as it results from [12, Eq. (19)], is identical as form
to our solution (31) for the non-dimensional velocity
u0m(y, t).

4. Applications

The general solutions (15), (26), and (29) can be
used to give the temperature and velocity distributions
for any motion problem with physical relevance. For
illustration, two special cases are considered and some
known results from the literature are recovered.

4.1. Flow over an Isothermal Suddenly Moved Plate

Let us now consider the flow over an infinite plate
which is initially at rest and is suddenly moved in its
own plane with the velocity U(1− γ eδ t) with γ ≥ 0
and δ > 0. The temperature of the plate is Tw for t > 0,
and the functions f (·) and h(·) become identically to
H(t)(1− γ eδ t) and H(t), where H(·) is the Heaviside
unit step function. Temperature distribution and the
Nusselt number, as it results from (16), (19), and (A7),
are identically to those obtained in [12, Eq. (12)] (see
also [9, Eqs. (19) and (23)]), namely

T (y, t) = erfc

(
y
2

√
Preff

t

)
, Nu =

√
Preff

πt
. (33)

On the other hand, direct computations show that in
this case

(h∗a)(t) =
1− e−dt

Keff
+α

√
Prefft

1−Preff
E1,3/2(−dt) , (34)

(h∗ c)(y, t) =
1

Keff
erfc

(
y
√

Preff

2
√

t

)
− e−dt

2Keff
(35)

·
[

ey
√
−dPreff erfc

(
y
√

Preff

2
√

t
+
√
−dt

)
+ e−y

√
−dPreff erfc

(
y
√

Preff

2
√

t
−
√
−dt

)]
and the corresponding velocity

u(y, t) =
∫ t

0
(1− γ eδ (t−s))b(y,s)ds−Gr

∫ t

0
(h∗a)(s)

·b(y, t− s)ds+Gr(h∗ c)(t) (36)

is obtained introducing (34) and (35) into (26) with
f (t) = H(t)(1− γ eδ t).

Lengthy but straightforward computations show that
the solution corresponding to the no-slip condition on
the boundary, namely

u0(y, t) =
1
2

(
1− Gr

Keff

)[
ey
√

Keff erfc

(
y

2
√

t
+
√

Kefft

)
+ e−y

√
Keff erfc

(
y

2
√

t
−
√

Kefft

)]
− γ

2
e−δ t

[
ey
√

Keff−δ

· erfc

(
y

2
√

t
+
√

(Keff−δ ) t

)
+ e−y

√
Keff−δ erfc

(
y

2
√

t

−
√

(Keff−δ ) t

)]
+

Gr
2

e−dt

Keff

[
ey
√
−dPreff erfc

(
y

2
√

t

+
√
−Preff dt

)
+ e−y

√
−dPreff erfc

(
y

2
√

t
−
√
−Preff dt

)]
+

Gr
Keff

erfc

(
y
√

Preff

2
√

t

)
− Gre−dt

2Keff

[
ey
√
−dPreff

· erfc

(
y
√

Preff

2
√

t
+
√
−dt

)
+ e−y

√
−dPreff (37)

· erfc

(
y
√

Preff

2
√

t
−
√
−dt

)]
,

reduces to that obtained by Seth et al. [9, Eq. (20)] if
γ = 0. In the absence of thermal effects and if γ = 0,
(37) takes the simple form

um(y, t) =
1
2

[
ey
√

Keff erfc

(
y

2
√

t
+
√

Kefft

)
+ e−y

√
Keff erfc

(
y

2
√

t
−
√
−Kefft

)]
.

(38)
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By neglecting porous and magnetic effects, the classi-
cal solution is recovered.

4.2. Flow over an Oscillating Plate with Oscillatory
Heating

Let us suppose that after time t = 0 the infinite plate
is oscillating in its plane and its temperature is also
oscillatory. In this case, the functions f (·) and h(·) can
be taken to be sin(ωt), H(t)cos(ωt) or a combination
of them if the frequencies of thermal and mechanical
oscillations are the same. By making h(t) = sin(ωt)
into (15), where ω is the frequency of oscillations, it
results the staring solution for temperature

T (y, t) =
y
√

Preff

2
√

π

∫ t

0

sin [ω(t− s)]
s
√

s

· exp

(
−Preffy2

4s

)
ds .

(39)

This solution can be written as a sum of the steady-
state

Ts(y, t) =
y
√

Preff

2
√

π

∫
∞

0

sin [ω(t− s)]
s
√

s

· exp

(
−Preffy2

4s

)
ds ,

(40)

and transient

Tt(y, t) =−y
√

Preff

2
√

π

∫
∞

t

sin [ω(t− s)]
s
√

s

· exp

(
−Preffy2

4s

)
ds

(41)

solutions. The steady-state solution Ts(y, t) can be fur-
ther processed to give the simple form (see (A8) or [21,
Eq. (3.928)] after a suitable change of variable)

Ts(y, t) = exp

(
−y

√
ωPreff

2

)

· sin

(
ωt− y

√
ωPreff

2

)
.

(42)

The Nusselt number, as it results from (19), is

Nu =
√

2ωPreff

[
C(ωt)cos(ωt)+S(ωt)sin(ωt)

]
, (43)

where C(t) and S(t) are the Fresnel cosine and sine in-
tegrals [21]. It can be also written as a sum of steady-
state and transient components. Its steady-state com-
ponent Nus can be written in the simple form (see for
instance (A9) with p = 2)

Nus =
√

ωPreff sin
(

ωt +
π

4

)
. (44)

The corresponding velocity field, resulting from (26)
for f (t) = h(t) = sin(ωt), can be also processed but
the final result is not simpler.

However, it is worth pointing out that in the absence
of thermal effects our velocity field

u(y, t) =
1

α
√

π

∫ t

0

sin(t− s)√
s

exp

(
−y2

4s
−Keffs

)
ds

− 1
α2 ey/α

∫ t

0
sin(t− s)exp

( s
α2 −Keffs

)
· erfc

(
y

2
√

s
+
√

s
α

)
ds

(45)

is identical to that obtained by Hayat et al. [22,
Eq. (12)].

The general solution corresponding to the no-slip
condition can be obtained in the same way from (29). It
also can be written as a sum between steady-state and
transient solutions. In absence of thermal effects, the
steady-state component u0ms(y, t) of

u0m(y, t) =
y

2
√

π

∫ t

0

sin [ω(t− s)]
s
√

s

exp

(
−y2

4s
−Keffs

)
ds ,

(46)

for instance, can be written in the simple form

u0ms(y, t) = e−my sin(ωt−ny) ;

m,n =

√√√√√ω2 +K2
eff±Keff

2
.

(47)

By neglecting the porous and magnetic effects, this is
taking Keff = 0, our last relation reduces to the well-
known equality (17) from [23] (see also the corre-
sponding solution of Rajagopal [24, page 371 with
α1 = 0]).

5. Graphical Results, Discussion, and Conclusions

A theoretical study of the MHD natural convection
flow of an incompressible viscous fluid over an infi-
nite moving plate is developed when radiative, porous,
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and slippage effects are taken into consideration. Gen-
eral exact solutions are established for the dimension-
less temperature, velocity, and surface heat transfer
rate when the plate is sliding in its plane with an ar-
bitrary velocity U f0(t), and its temperature Twh0(t)
is also arbitrary. They satisfy all imposed initial and
boundary conditions and can be used to generate exact
solutions for various fluid motions with technical rele-
vance. For illustration, as well as for a check of general
results, two interesting cases are considered, and some
known results from the literature are recovered as lim-
iting cases. In the case of oscillating plate with oscilla-
tory heating, the starting solutions can be presented as
a sum of steady-state and transient solutions.

The starting solutions describe the motion of the
fluid some time after its initiation. After that time,
when the transients disappear, they tend to the steady-
state solutions that are periodic in time and indepen-
dent of the initial conditions. However, the steady-state
solutions satisfy the governing equations and boundary
conditions. Such solutions are important for those who
want to eliminate the transients from their experiments.

Now, in order to bring to light some relevant phys-
ical aspects of results that have been obtained, the ve-
locity and temperature profiles are presented for dif-
ferent situations with typical values of parameters. The
influence of Preff on the temperature, in the case of an
isothermal suddenly moved plate, was shown in [12,
Fig. 6]. Our interest here is to determine the required
time to reach the steady-state in the case of an oscil-
latory heating on the boundary. This time, as it results
from (40) and (43), depends on the effective Prandtl
number and the frequency of oscillations ω . Figures 1
and 2 clearly show that the required time to reach the
thermal steady-state increases with respect to Preff and
decreases with regard to ω . After this time, that seems
to be small enough, the dimensionless temperature dis-
tribution in fluid varies according to the steady-state
solution (43).

In the first case, of the motion over an isothermal
suddenly moved plate, we are equally interested on the
influence of slip parameter α and of pertinent param-
eters Preff, Keff, and Gr on the fluid motion. From Fig-
ure 3, that presents profiles of the velocities u(y, t) and
u0(y, t) against y, it is clearly seen that the slip parame-
ter α has a significant influence on the fluid motion.
Furthermore, as expected, the fluid velocity is a de-
creasing function with respect to α , and the velocity
profiles corresponding to u(y, t) tend to superpose over

that of u0(y, t) as α approaches to zero. All velocity
profiles smoothly decrease from maximum values at
the boundary to a minimum value for large values of y.
The influence of Preff and Keff on the fluid motion is un-
derlined by Figures 4 and 5. The dimensionless veloc-
ity of the fluid is a decreasing function with respect to
both numbers. Velocity profiles monotonically decay
for all values of Preff from maximum values at the wall
to zero in the free stream. However, Figure 5 shows
that for smaller values of Keff (i. e. 3 and 4) there are
velocity over-shoots close to the moving plate. Then,
the velocity profiles smoothly descend to their lowest
values for large values of y. Velocity profiles against y
are also depicted in Figure 6 for different positive and
negative values of Gr. Positive or negative values of
Gr correspond to the cooling, respectively heating of
the plate by natural convection. It is clearly seen that
the velocity is an increasing function with regard to Gr
in the case of cooling and a reverse effect is observed
in the case of heating of the plate. For positive values
of Gr, for instance, the values of the velocity at any
distance y are always higher for Gr = 3 than that for
Gr = 1 or 2. Furthermore, the boundary layer thick-
ness increases with respect to Gr and decreases if Preff
or Keff increases.

Finally, for comparison, profiles of the velocity
u(y, t) given by (36) and of its thermal component
ut(y, t) are presented in Figure 7 against y for differ-
ent values of time and the same values of common pa-
rameters. It is clearly seen that the thermal effects are
significant and the difference u(y, t)−ut(y, t) monoton-
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Fig. 1. Required time to reach the thermal steady-state in the
case of oscillatory heating of the plate, with an error of 10−4,
for ω = 2 and different values of Preff.
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Fig. 2. Required time to reach the thermal steady-state in the
case of oscillatory heating of the plate, with an error of 10−4,
for Preff = 0.355 and different values of ω .
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Fig. 3. Profiles of velocities u(y, t) and u0(y, t) given by (36)
and (37) for K = 7, Pr = 0.355, Gr = 2, γ = 0.5, δ = 0.8,
t = 0.5, and different values of α .
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values of Preff.
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ically decreases both with respect to the temporal vari-
able t and with respect to y. Consequently, the thermal
effects as well as the slippage on the solid wall are no-
table, and they have to be taken into consideration. All
graphical representations have been performed using
the program Mathcad 14.0.

Appendix

L−1
{

e−y
√

aq
}

=
y
√

a

2t
√

πt
exp

(
−ay2

4t

)
, (A1)

L−1

{
qα−β

qα −a

}
= tβ−1Eα,β (atα) ; α,β > 0 , (A2)

L−1
{

e−a
√

q

b+
√

q

}
=

1√
πt

exp

(
−a2

4t

)
−beab+b2terfc

(
a

2
√

t
+bt

)
,

(A3)

L−1 {F(q+a)}= f (t)e−at , L−1
{

F
(q

a

)}
= a f (at) if f (t) = L−1 {F(q)} ,

(A4)

L−1
{

e−y
√

aq

q+b

}
=

e−bt

2

[
ey
√
−aberfc

(
y
√

a

2
√

t
+
√
−bt

)
+ e−y

√
−aberfc

(
y
√

a

2
√

t
−
√
−bt

)]
,

(A5)

L−1

{
e−y
√

q+a

q−b

}
=

ebt

2

[
ey
√

a+berfc

(
y

2
√

t
(A6)

+
√

(a+b)t
)

+ e−y
√

a+berfc

(
y
√

a

2
√

t
−
√

(a+b)t
)]

,∫ t

0
f (s)δ (t− s)ds = f (t)

if δ (·) is the Dirac delta function,
(A7)

∫
∞

0
e−a2s2

sin

(
b2

s2

)
ds =

√
π

2a
e−ab

√
2 sin(ab

√
2) ,∫

∞

0
e−a2s2

cos

(
b2

s2

)
ds =

√
π

2a
e−ab

√
2 cos(ab

√
2) ,

(A8)

∫
∞

0
sin(asp)ds =

Γ

(
1
p

)
sin
(

π

2p

)
pa1/p

,

∫
∞

0
cos(asp)ds =

Γ

(
1
p

)
cos
(

π

2p

)
pa1/p

; a > 0 , p > 1 .

(A9)
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