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We apply the Gröbner basis to the ansatz method in quantum mechanics to obtain the energy
eigenvalues and the wave functions in a very simple manner. There are important physical potentials
such as the Cornell interaction which play significant roles in particle physics and can be treated via
this technique. As a typical example, the algorithm is applied to the semi-relativistic spinless Salpeter
equation under the Cornell interaction. Many other applications of the idea in a wide range of physical
fields are listed as well.
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1. Introduction

The potential model of quantum mechanics, de-
spite being old, is still a challenging topic. In partic-
ular, in many cases it leads to differential equations
which are not exactly solvable via the common ana-
lytical methodologies of mathematical physics such as
the supersymmetry quantum mechanics (SUSYQM),
pint canonical transformation (PCT), Lie algebras,
Nikiforov–Uvarov (NU) technique, series expansion,
etc [1]. On the other hand, the analytical approaches
are in some aspects superior to their counterpart nu-
merical techniques. For example, they provide a deeper
insight into the physics of the problem and are more
touchable for graduate and undergraduate students.
A very successful approach in these cases is the so-
called ansatz approach that has two steps. The first is
to find the solution of a corresponding Riccati equa-
tion, which is often easily found. The second, and per-
haps the more cumbersome step, is solving a conse-
quent system of equations with some unknown pa-
rameters. Therefore, if there is a simple way to ac-
quire the explicit solutions of the obtained system of
equations, we can have a better understanding of the
impact of each parameter in the energy relation and
therefore the phenomenological study goes a step for-
ward. In this study, at first the Gröbner basis proper-
ties are briefly reviewed. We next apply this method

to some present studies on nonrelativistic Schrödinger,
semi-relativistic two-body spinless Salpeter, and rel-
ativistic Duffin–Kemmer–Petiau (DKP) equations as
typical examples. For some interesting points of the
ansatz approach, the interested reader can see refer-
ences [2 – 10], which apply the technique to various
equations of quantum mechanics.

A Gröbner basis is a set of multivariate polynomi-
als with desirable algorithmic properties. Using the
Buchberger algorithm, every set of polynomials can
be transformed into a Gröbner basis [11]. Generally,
a Gröbner basis with respect to lexicographic order has
an upper triangular structure, and a system with this
structure is easy to solve because its first equation has
only one variable. So, a usual technique may be applied
to extract the root of this one variable polynomial. By
obtaining the root of the first equation and substituting
in the second equation, which is a two variables poly-
nomial, the solution of the second polynomial equation
can be computed and so on.

2. The Two-Body Spinless Salpeter Equation

This semi-relativistic spinless Salpeter equation is
the most straightforward generalization of the non-
relativistic Schrödinger equation into the relativis-
tic regime. It originated form the Salpeter equa-
tion [12 – 15] by neglecting the spin degrees of free-
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mailto:msaleh.chaharbashloo@gmail.com


M. S. Chaharbashloo et al. · An Application of Gröbner Basis in Differential Equations of Physics 647

dom and the time evolution. The two-body spinless
Salpeter equation under the Cornell potential V (r) =
ar + b

r [16] leads to the Schrödinger-like equation [2][
d2

dr2 +
A
r2 +

B
r

+Cr2 + f r +h

]
ψn,l(r) = 0 , (1)

where

A =−l(l +1)+
µb2

h̄2m̃
, B =−2µb

h̄2 −
2En,lbµ

h̄2m̃
,

C =
µa2

h̄2m̃
, f =−2µa

h̄2 −
2µEn,la

h̄2m̃
,

h =
2µEn,l

h̄2 +
µE2

n,l

h̄2m̃
+

2abµ

h̄2m̃
.

(2)

In [2], the authors have proposed the ansatz solution

ψn,l(r) = gn(r)exp(yl(r)) (3)

with

gn(r) =

{
1 , if n = 0 ,

∏
n
i=1(r−αn

i ) , if n≥ 1 ,
(4)

where, for the nodeless wavefunction,

gn(r) = 1 , (5a)

yl(r) = δ ln(r)+β r2 + γr . (5b)

After equating the corresponding powers on both sides,
we get

δ
2−δ =−A , 2δγ =−B , 4β

2 =−C ,

4βγ =− f , γ
2 +2β +4βδ =−h

(6)

which give the energy vs. various parameters engaged.

3. Other Wave Equations of Quantum Mechanics

Within this subsection, we mention other wave
equations of quantum mechanics to ensure the wide ap-
plicability of the ansatz method. Although we applied
the method to other published works such as [5, 10],
we avoided including the results due to the huge vol-
ume of the calculations. The ansatz approach works
well for other equations of quantum mechanics under
specific interactions. Some other examples are as fol-
lows. We only include the equations to preserve com-
pactness.

3.1. The Nonrelativistic Schrödinger Equation

The Schrödinger equation, despite being old, is
still the focus of many studies in various branches of
physics and chemistry. In its radial form, the equation
is written as [17, 18][

d2

dr2 −
2µ

h̄2 V (r)− (D+2l−1)(D+2l−3)
4r2

+
2µEn,l

h̄2

]
Rn,l(r) = 0 ,

(7)

where r, h̄, µ , V (r), D, l, n, En,l , and Rn,l respec-
tively denote the radius, Planck constant, mass, poten-
tial (interaction), dimension of problem, orbital quan-
tum number, principal quantum number, energy, and
the wave function. The ansatz technique can for ex-
ample solve the equation under the Killinbeck poten-
tial containing linear, quadratic, and inverse (Coulomb)
terms.

3.2. Relativistic Dirac Equation in Spin and
Pseudo-Spin Symmetry Limits

The Dirac equation describes relativistic spin- 1
2 par-

ticles. In very recent studies, many authors have stud-
ied the so-called spin and pseudospin symmetries
of the Dirac equation which yield outstanding phe-
nomenological results in hadron and nuclear spectro-
scopies [19 – 21]. In these studies, one has to deal with
second-order differential equations{

d2

dr2 −
κ(κ+1)

r2 +
2κ

r
U(r)− dU(r)

dr
−U2(r)

}
Fnκ(r)

= (M +Enκ −∆(r))(M−Enκ +Σ(r))Fnκ(r) , (8a)

and{
d2

dr2 −
κ(κ−1)

r2 +
2κ

r
U(r)+

dU(r)
dr

−U2(r)

}
Gnκ(r)

= (M +Enκ −∆(r))(M−Enκ +Σ(r))Gnκ(r) , (8b)

for spin and pseudo-spin symmetries, respectively. As
the notation bears,

∆(r) = V (r)−S(r) , (8c)

Σ(r) = V (r)+S(r) , (8d)

with S and V respectively denoting the scalar and vec-
tor interactions. Obviously, the quantum numbers here
are n and κ . We see that the ansatz approach works
well for the successful Cornell potential in this case.
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3.3. Relativistic Klein–Gordon Equation

This relativistic equation investigates spin-0 bosons.
In the D-dimensional space, it posses the form [8, 17][

d2

dr2 +E2
n,l +V 2(r)−2En,lV (r)−m2

0−S2(r)

−2m0S(r)− (D+2l−1)(D+2l−3)
4r2

]
un,l(r) = 0 .

(9)

Again, we can use the technique for Cornell, Killing-
beck, and Kratzer potentials. The latter contains
Coulomb and inverse square terms.

3.4. Relativistic Duffin–Kemmer–Petiau (DKP)
Equation

A very challenging equation in quantum mechanics
is the DKP equation which governs both spin-0 and
spin-1 bosons. In its spin-0 form, and for vanishing
scalar interaction, it appears as [10, 22](

d2

dr2 −
J(J +1)

r2 +(En,J−V (r))2

−m2

)
Fn,J(r) = 0 ,

(10)

which resembles the Klein–Gordon equation and
therefore the same story holds here. It should be men-
tioned that the DKP equation under a scalar term be-
comes much more difficult but it has been very re-
cently solved under the coulomb term by the ansatz
technique [10].

4. A Worked Example

As a typical example in current physics research, let
us now apply the Gröbner basis to solve (6). The given
problem is converted to find the zeros of a multivari-
ate polynomials system. As explained in the introduc-
tion, using Buchberger algorithm, we can compute the
Gröbner basis for the system with respect to lexico-
graphic order. So, the energy of the system is obtained
as

E =
−ma+ γ

m2a
.

To see the details, please refer to the Appendix.

5. Conclusion

As already mentioned, there are many differential
equations in quantum mechanics which can not be
solved by common analytical techniques of mathemat-
ical physics. A very economical methodology in deal-
ing with these problems is the quasi-exact ansatz ap-
proach which is based on finding the solution of a Ric-
cati equation and solving a set of consequent equations
which contain some unknown parameters. Although
the story seems simple, solving the obtained equations
is somehow difficult. A very efficient methodology for
solving these equations (especially for higher nodes)
is the Gröbner basis. It should be noted that even with
rather high speed computers, we ought to tolerate a rel-
atively long time run. In addition, we wish to empha-
size on a very important point; although we included
a single example for the sake of conciseness (the so-
lution is many cases tens of pages), the tool and the
ansatz approach work well for many differential equa-
tions of physics and mathematics. Consequently, the
idea works well in many areas of physics such as the-
oretical nuclear physics, e. g. in the spin and pseud-
spin symmetry limits of Dirac equation (which find no-
table applications in hadron and nuclear spectroscopy),
theoretical nano and solid-state physics (e. g. in solv-
ing the Schrödinger equation for quantum dots and
wires, and Dirac equation for Graphene), string theory
(e. g. in solving the equations of motion), cosmology
(in the problem of quasi-normal modes of black holes
and the Wheeler–DeWitt equation), particle physics
(for solving Klein–Gordon, Dirac, spinless Salpeter,
and DKP equation in meson and baryon spectroscopy,
etc.

Appendix

The detailed solution to (6) for various states is

> restart;
> E[n,l]:=E:
> with(Groebner):
A:=-lˆ2-l+m*mu*bˆ2:
> B:=-2*mu*b-2*m*mu*E[n,l]*b:
> C:=m*mu*aˆ2:
> F:=-2*mu*a-2*m*mu*E[n,l]*a:
> h:=2*mu*E[n,l]+mu*m*E[n,l]ˆ2

+2*m*mu*a*b:
> f[1]:=deltaˆ2-delta+A:
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> f[2]:=2*delta*gamma+B:
> f[3]:=4*betaˆ2+C:
> f[4]:=4*beta*gamma+F:
> f[5]:=gammaˆ2+2*beta

+4*beta*delta+h:
> FF:=[f[1],f[2],f[3],f[4],f[5]]:
> vars:=[delta,beta,gamma,l,b,

E[n,l],a]:
> G:=Basis(FF,plex(delta,beta,gamma,

l,E[n,l],b,a)); nops(%);

G :=
[
m3a4 + µa2,µa2 +Emµa2 +a3

γm2,γ4 +2γ
2
µE

+ γaµ +mµEaγ +2µ
2ba+ γ

2
µmE2+2m3a3

µb,γ3
µb

−µ
2b2

γ
2 + γ

3
µbmE +mµ

2b2
γa+2mµ

3b3a+m2
µ

2

·b2Eaγ +2m4
µ

2b3a3 + γ
4l2 + γ

4l,2βγ−µa

−mµEa,δγ−µb−mµEb
]

> Solve(G,[delta,beta,gamma,l,b,
E[n,l],a);{[[

a , γ
2+2µE+µmE2 , γ

2l2+γ
2l+γµb+mµEbγ

−µ
2b2 , β , δγ−µb−mµEb

]
,plex(δ ,β ,γ, l,b,E,a),{}]

,
[[

m3a2 + µ , µ +mµE + γm2a , −m2ba+ l2

+ l , −µ+2mβ , m2ba+δ
]
, plex

(
δ ,β ,γ, l,b,E,a

)
,{

a
}]}

> Solve(a,gammaˆ2+2mu*E+mu*m*Eˆ2,
gammaˆ2*l+gammaˆ2*lˆ2+gamma*mu*b
+gamma*m*mu*E*b-muˆ2*bˆ2,
beta,delta*gamma-mu*b-m*mu*E*b]);

{
E =

bγ3

(γl + γ + µb)(γl−µb)
, a = 0 , b = b , l = l ,

m =−
(
γ2l2+γ2l+γµb−µ2b2

)
(γl+γ+µb)(γl−µb)

γ4µb2 ,

µ = µ , β = 0 , δ =−γ2l2 + γ2l−µ2b2

γ2

}
,{

E = E , a = 0 , b = 0 , l = 0 , m =−γ2 +2µE
E2µ

,

µ = µ , β = 0 , δ = 0

}
,

{
E = E , a = 0 , b = 0 ,

l =−1 , m =−γ2 +2µE
E2µ

, µ = µ , β = 0 , δ = 0

}
> Solve([mˆ3*aˆ2+mu,

mu+m*mu*E+gamma*mˆ2*a,
-b*mˆ2*a+l+lˆ2,
2*beta*m-mu,b*mˆ2*a+delta]);{

E =
−ma+γ

m2a
, a = a , b =

(l+1)l
m2a

, l = l , m = m ,

µ =−m3a2 , β =−1
2

m2a2 , δ =−(l +1)l
}

,{
E = E , a = a , b = b , l = 0 , m = 0 , µ = 0 ,

β = β , δ = 0

}
,

{
E = E , a = 0 , b = b , l =−1 ,

m = 0 , µ = 0 , β = β , δ = 0

}
,

{
E = E , a = 0 ,

b = b , l = 0 , m = m , µ = 0 , β = 0 , δ = 0 ,

E = E , a = 0 , b = b , l =−1 ,

m = m , µ = 0 , β = 0 , δ = 0

}
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[15] L. Chang and C. D. Roberts, Phys. Rev. Lett. 103,
81601 (2009).

[16] D. H. Perkins, An Introduction to High Energy Physics,
Cambridge University Press, Cambridge 2000.

[17] S.-H. Dong, Wave Equations in High Dimensions,
Springer, Dordrecht 2011.

[18] B. H. Yazarloo, H. Hassanabadi, and S. Zarrinkamar,
Eur. Phys. J. Plus 127, 51 (2012).

[19] J. N. Ginocchio, Phys. Rep. 414, 165 (2005).
[20] S. Zarrinkamar, A. A. Rajabi, and H. Hassanabadi,

Ann. Phys. 325, 2522 (2010).
[21] H. Hassanabadi, E. Maghsoodi, and S. Zarrinkamar,

Eur. Phys. J. Plus 127, 31 (2012).
[22] T. R. Cardoso, L. B. Castro, and A. S. de Castro, Int. J.

Theor. Phys. 49, 10 (2010).

http://dx.doi.org/10.1103/PhysRevLett.103.081601
http://dx.doi.org/10.1103/PhysRevLett.103.081601
http://dx.doi.org/10.1140/epjp/i2012-12051-9
http://dx.doi.org/10.1140/epjp/i2012-12051-9
http://dx.doi.org/10.1016/j.physrep.2005.04.003
http://dx.doi.org/10.1016/j.aop.2010.05.013
http://dx.doi.org/10.1016/j.aop.2010.05.013
http://dx.doi.org/10.1140/epjp/i2012-12031-1
http://dx.doi.org/10.1140/epjp/i2012-12031-1
http://dx.doi.org/10.1007/s10773-009-0172-1
http://dx.doi.org/10.1007/s10773-009-0172-1
http://dx.doi.org/10.1007/s10773-009-0172-1

	An Application of Gröbner Basis in Differential Equations of Physics
	1 Introduction
	2 The Two-Body Spinless Salpeter Equation
	3 Other Wave Equations of Quantum Mechanics
	3.1 The Nonrelativistic Schrödinger Equation
	3.2 Relativistic Dirac Equation in Spin and Pseudo-Spin Symmetry Limits
	3.3 Relativistic Klein-Gordon Equation
	3.4 Relativistic Duffin-Kemmer-Petiau (DKP) Equation

	4 A Worked Example
	5 Conclusion
	Appendix  


