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In this paper, exact solutions of velocity and stresses are obtained for the magnetohydrodynamic
(MHD) flow of a Maxwell fluid in a porous half space by the Laplace transform method. The flows are
caused by the cosine and sine oscillations of a plate. The derived steady and transient solutions satisfy
the involved differential equations and the given conditions. Graphs for steady-state and transient
velocities are plotted and discussed. It is found that for a large value of the time t, the transient
solutions disappear, and the motion is described by the corresponding steady-state solutions.
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1. Introduction

The problems resulting from the flows of incom-
pressible non-Newtonian fluids have been of great and
increasing interest for the last five decades. Such fluids
differ from the Newtonian fluids in that the relation-
ship between the shear stress and the velocity gradient
is more complicated. Examples of the non-Newtonian
fluids are coal water, jellies, toothpaste, ketchup, food
products, inks, glues, soaps, blood, and polymer solu-
tions. It is well accepted now that the flow behaviour
of the non-Newtonian fluids cannot be described by
the Navier–Stokes equations. The constitutive equa-
tions of these fluids lead to flow problems in which
the order of the differential equations exceeds the num-
ber of available conditions. The solutions of resulting
problems for these fluids are in general more difficult
to obtain and more complex than the Navier–Stokes
equations. This is not only true for exact analytic so-
lutions but even for numerical solutions. With all these
difficulties, several recent researchers [1 – 14] are still
involved in the study of steady and unsteady flows of
the non-Newtonian fluids.

Further, the flows of non-Newtonian fluids filling
a porous medium are of considerable practical and
theoretical interest. The applications are in numer-
ous areas such as ground water flow, irrigation prob-
lems, thermal and insulating engineering, ventilation
of rooms, grain storage devices, chemical catalytic re-

actors, and many others. Having such motivation in
mind, some contributions [15 – 18] discuss the flows
in a porous medium.

In recent years, the rate type fluid models have re-
ceived special attention. The first viscoelastic rate type
model, which is still used widely, is due to Maxwell.
Maxwell himself recognized that some liquids have
a trend for storing energy and a means for dissipating
energy, the storing of energy characterizing the fluid’s
elastic response and the dissipation of energy char-
acterizing its viscous nature. The Maxwell model is
the simplest subclass of rate type fluids which takes
into consideration the stress relaxation effect. Hav-
ing this motivation in mind, Fetecau et al. [19] stud-
ied the Stokes second problem in a Maxwell fluid.
Vieru and Rauf [20] obtained the exact solutions of
Stokes flows for a Maxwell fluid whereas Vieru and
Zafar [21] recently investigated some Couette flows
of a Maxwell fluid. In both of these papers the slip
boundary condition is used and the solutions are ob-
tained using the Laplace transform technique [22,
23].

The aim of the current study is to extend the flow
analysis of [19] in two directions, i. e. for magnetohy-
drodynamic (MHD) effects and porous medium. With
this motivation, the paper is organized as follows: the
next section follows the problem formulation; Sections
three to five present the solutions, graphical results, and
conclusions.
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2. Definition of the Problem

Let us consider the unsteady unidirectional flow of
a MHD incompressible Maxwell fluid filling the semi-
infinite porous space bounded by an infinite plate.
A uniform magnetic field of strength B0 is extended
normal to the flow direction. At time t = 0+, both the
fluid and plate are at rest. After time t ≥ 0 the plate
starts its oscillations in its own plane and induces the
motion in the fluid. The governing equations are [10](
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∂
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where ρ is the fluid density, µ the dynamic viscosity, σ

the electrical conductivity, λ the relaxation time, and T
the tangential stress; k (> 0) and ϕ (0 < ϕ < 1) are re-
spectively the permeability and porosity of the porous
space. The subjected initial and boundary conditions
are written in the following form:

∂u(y,0)
∂ t

= u(y,0) = 0; y≥ 0 , (3)

u(0, t) = U0 cos(ω0t)
or u(0, t) = U0 sin(ω0t) ; t > 0 ,

(4)

u(y, t)→ 0 , T (y, t)→ 0; y→ ∞ ; t > 0 , (5)

where U0 signifies the amplitude and ω0 the frequency
of oscillation of the plate.

3. Solution of the Problem

Inserting the following dimensionless variables
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The dimensionless initial and boundary conditions are

∂U(ξ ,0)
∂τ

= U(ξ ,0) = 0; ξ > 0 , (9)

U(0,τ) = cos(ωτ) or U(0,τ) = sin(ωτ); τ > 0,

U(ξ ,τ),S(ξ ,τ)→ 0; ξ → ∞ ; τ > 0 . (10)

By taking the Laplace transform of (7), (8), and (10),
using (9), one obtains

d2Ū
dξ 2 −
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]
Ū = 0 , (11)
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Ū(ξ ,q), S̄(ξ ,q)→ 0 as ξ → ∞ , (13)

where Ū(ξ ,q) and S̄(ξ ,q) denote the Laplace trans-
forms of U(ξ ,τ) and S(ξ ,τ), respectively.

The solutions of (11) subjected to the boundary con-
ditions (13) take the form

Ūc(ξ ,q) =
q
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,

where the subscripts c and s refer to cosine and sine
oscillations of the plate.

In order to find the dimensionless velocity, we
write (14) and (15) in the following forms:

Ūc(ξ ,q) = Ū1(q)Ū3(ξ ,q) , (16)

Ūs(ξ ,q) = Ū2(q)Ū3(ξ ,q) , (17)

with

Ū1(q) =
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ω

q2 +ω2 , (18)
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(
−ξ

√
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where

b0 =
Mλ1 +1

2λ1
, a2 = b2

0−
1
λ1

(
M +

1
K

)
.

Writing U1(τ) = L−1{Ū1(q)}, U2(τ) = L−1{Ū2(q)},
and U3(ξ ,τ) =L−1{Ū3(ξ ,q)}, and using the convolu-
tion theorem [20], one obtains

Uc(ξ ,τ) = (U1 ·U3)(τ)

=
∫

τ

0
U1(τ− s)U3(ξ ,s)ds ,

(20)

Us(ξ ,τ) = (U2 ·U3)(τ)

=
∫

τ

0
U2(τ− s)U3(ξ ,s)ds ,

(21)

where L−1 is denoting the inverse Laplace transform.
Laplace inversion of (18) leads to the following ex-

pressions:

U1(τ) = cos(ωτ) , U2(τ) = sin(ωτ) . (22)

In order to find the Laplace inverse of Ū3(ξ ,q), we use
a similar procedure as in [19] and write
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where δ (·) is the Dirac delta function, and I1(·) is the
modified Bessel function of the first kind of order one.
Now using equations (22) and (23) into equations (20)
and (21) and using the filtration property of the Dirac
delta function [23], we get
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The starting solutions Uc(ξ ,τ) and Us(ξ ,τ) given
by (24) and (25) are rather complicated. Hence, we de-
rive approximate expressions for these velocities cor-
responding to small and large values of time. This time
is important, especially for those who need to elim-
inate transients from their rheological measurements.
In order to determine this time, we need first to write
the starting solutions as the sum of the steady state and
transient solutions. Therefore, we decompose the inte-
grals from (24) and (25) under the form [19]∫

τ

ξ

√
λ1

f (ξ ,τ,s)ds =
∫

∞

ξ
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−
∫

∞

τ

f (ξ ,τ,s)ds
(26)

and obtain
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(27)

where the steady state solutions are written as

Ucs(ξ ,τ) = e−mξ cos(ωτ−nξ ) ,

Uss(ξ ,τ) = e−mξ sin(ωτ−nξ ) ,
(28)

and the transient solutions are written as
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It should be pointed out through (27), (29), and (30)
that for large time τ the starting solutions Uc(ξ ,τ) and
Us(ξ ,τ) tend to the steady-state solutions Ucs(ξ ,τ) and
Uss(ξ ,τ) which are periodic in time and independent of
the initial conditions. However, these solutions satisfy
the governing equations and boundary conditions.

Following a similar method for solutions as in the
velocity case, the corresponding shear stresses Sc(ξ ,τ)
and Ss(ξ ,τ) can also be presented as convolution
products

Sc(ξ ,τ) = (S1 ·S3)(τ)

=
∫

τ

0
S1(τ− s)S3(ξ ,s)ds ,

(33)

Ss(ξ ,τ) = (S2 ·S3)(τ)

=
∫
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}
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}

,
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}

.

Now using (14) and (15) into (12), we obtain

S̄c(ξ ,q) =−S̄1(q)S̄3(ξ ,q) , (35)

S̄s(ξ ,q) =−S̄2(q)S̄3(ξ ,q) , (36)
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The Laplace inverses of (37) and (38) yield to
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The Laplace inverse of (39) using formulae (A2)
and (A7) from Appendix A in [19], is given as

S3(ξ ,τ) =
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where I0(·) denotes the modified Bessel function of or-
der zero and type one. Substituting (40) – (42) into (33)
and (34), we obtain the following expressions for the
shear stress:

Sc(ξ ,τ) =−
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Ss(ξ ,τ) =−
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The corresponding steady-state and transient solutions
are (see Appendix for details)

Sc(ξ ,τ) = Scs(ξ ,τ)+Sct(ξ ,τ) , (45)

Ss(ξ ,τ) = Sss(ξ ,τ)+Sst(ξ ,τ) , (46)

where
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Scs(ξ ,τ) =
√
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are the shear stresses corresponding to the steady state,
whereas
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Fig. 1 (colour online). Steady-state velocity given by (28) for different values of M when λ1 = 0.2 and K = 1.

Sst(ξ ,τ) =



0 for 0 < τ < ξ
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(
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√
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are the adequate transient parts. Furthermore, the
present solutions are more general and all solutions
in [19] appear as the limiting cases. Hence, this pro-
vides a useful mathematical check to our calculi.

4. Graphical Results and Discussion

This section is devoted to various results obtained
from the flow analyzed in this paper. The graphical in-
terpretations for different values of the involved pa-
rameters on the velocity profiles are given. Special
attention has been focused on the variations of the
magnetic parameter M, the permeability parameter K,
the non-Newtonian fluid parameter λ1, and the non-
dimensional time τ on the profiles of steady-state and
transient velocities for both the cosine and sine os-
cillations of the plate. Therefore, Figures 1 – 10 are
displayed. In these, Figures 1 – 4 are plotted for the
steady-state velocities Ucs for the cosine oscillations
and Uss for the sine oscillations of the plate. Similarly,
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Fig. 2 (colour online). Steady-state velocity given by (28) for different values of K when λ1 = 0.2 and M = 1.

Fig. 3 (colour online). Steady-state velocity given by (28) for different values of τ when λ1 = 0.2 and K = 1.

Fig. 4 (colour online). Steady-state velocity given by (28) for different values of ω when λ1 = 0.2 and K = 1.
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Fig. 5 (colour online). Transient velocity given by (29) for different values of M when λ1 = 0.2 and K = 0.7.

Fig. 6 (colour online). Transient velocity given by (29) for different values of K when λ1 = 0.2 and M = 0.7.

Fig. 7 (colour online). Transient velocity given by (29) for different values of λ1 when K = 0.2 and M = 0.7.
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Fig. 8 (colour online). Transient velocity given by (30) for different values of M when λ1 = 0.2 and K = 0.7.

Fig. 9 (colour online). Transient velocity given by (30) for different values of K when λ1 = 0.2 and M = 0.7.

Fig. 10 (colour online). Transient velocity given by (30) for different values of λ1 when M = 0.2 and K = 0.7.
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in Figures 5 – 7 and 8 – 10 the transient velocities Uct
and Ust corresponding to cosine and sine oscillations
of the plate are plotted.

The influence of the parameter M on the steady-
state velocity is shown in Figure 1. It is observed that
the amplitude of the velocity as well as the bound-
ary layer thickness decreases when M is increased for
both type of oscillations. Physically, it may also be ex-
pected due to the fact that the application of a trans-
verse magnetic field results in a resistive type force
(called Lorentz force) similar to the drag force, and
upon increasing the values of M, the drag force in-
creases which leads to the deceleration of the flow.
In Figure 2, the profiles of steady-state velocity ver-
sus ξ have been plotted for various values of perme-
ability parameter K by keeping other parameters fixed.
It is observed that for large values of K, velocity and
boundary layer thickness are increased for both cosine
and sine oscillations. This explains the physical situa-
tion that as K increases, the resistance of the porous
medium is lowered which increases the momentum
development of the flow regime, ultimately enhances
the velocity field. It is further observed that in case
of sine oscillations, the velocity goes to zero before
than that for cosine oscillations. Figure 3 shows the
variations in steady-state velocities for different val-
ues of non-dimensional time τ . It is found that for
both types of oscillations, velocities admit an oscil-
lating nature. The steady-state velocities for different
values of oscillating frequency ω in Figure 4 show that
with increasing values of ω the oscillations in veloci-
ties increase.

Furthermore, the profiles of transient velocity for
the cosine oscillations of the plate along ξ and τ for
different values of magnetic parameter M are show
in Figure 5. As it is clear from (29) that for positive
values of τ such that τ < ξ

√
λ1, the fluid is static,

whereas it is dynamic for τ > ξ
√

λ1. A similar be-
haviour of the transient velocity is observed in Fig-
ure 5. Moreover, with increasing M, we found that the
velocity decreases due to an increasing resistive force.
For large time, the transient velocity disappears and
the motion is described by the corresponding steady-
state solutions. This time is important for those who
need to eliminate transient velocity from their rheo-
logical measurements. The transient velocity along ξ

and τ corresponding to the cosine oscillations of the
plate for different values of permeability parameter K
are shown in Figure 6. It is observed that due to less re-

sistance with increasing permeability, the fluid velocity
increases.

The influence of the fluid parameter λ1 on the tran-
sient velocity along ξ and τ is studied in Figure 7. It is
found that the velocity decreases with increasing val-
ues of λ1. However, after a certain value of ξ ' 2.8, the
velocity becomes zero. Physically, it is true due to the
fact that the non-Newtonian fluid parameter has reduc-
ing effects on the flow and hence the velocity of the
fluid decreases with increasing values of λ1. Finally,
the graphs of transient velocity for the sine oscillations
are displayed in Figures 8 – 10. It is investigated from
these graphs that the overall behaviour of the velocity
is identical to that studied for the cosine oscillations
of the plate. However, it is interesting to note that the
time required to reach the steady-state for sine oscilla-
tions of the plate is smaller than that required for the
cosine oscillations of the plate. Of course, the required
time to reach the steady-state also depends on the ma-
terial constant λ1 together with physical parameters M
and K.

5. Conclusions

Exact solutions for the unsteady MHD flow of
a Maxwell fluid saturating the porous space are suc-
cessfully obtained. The motion in the fluid was induced
due to the cosine and sine oscillations of the plate. The
solutions for velocity distributions and shear stresses
are established and then analyzed for small as well as
large times. It is noted that for large times, when the
transient solutions disappear, the starting solutions re-
duce to the steady-state solutions which are periodic
in time and independent of initial conditions. The tran-
sient solutions of the velocity are reduced when time
is increased. The graphical results are displayed to see
the effects of various indispensable parameters on the
velocity for cosine as well as for sine oscillation of the
boundary. The solutions in [19] appeared as a special
case when M = 1

K = 0.
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Appendix

In order to derive (47) and (49), we use (26) into (43)
to get

Sc(ξ ,τ) =−



0 for 0 < τ < ξ
√

λ1 ,
1√
λ1

e−b0τ I0

(
a
√

τ2−ξ 2λ1

)
−a1 e

− τ

λ1
∫

τ

ξ

√
λ1

exp
((

1
λ1
−b0

)
s
)

I0

·
(

a
√

s2−ξ 2λ1

)
ds+a1 e

− τ

λ1
∫

∞

τ

exp
((

1
λ1
−b0

)
s
)

I0

(
a
√

s2−ξ 2λ1

)
ds

+a2
∫

τ

ξ

√
λ1

e−b0s cos(ω(τ− s))I0

·
(

a
√

s2−ξ 2λ1

)
ds−a2

∫
∞

τ
e−b0s

·cos(ω(τ− s))I0

(
a
√

s2−ξ 2λ1

)
ds

−a3
∫

τ

ξ

√
λ1

e−b0s sin(ω(τ− s))I0

·
(

a
√

s2−ξ 2λ1

)
ds+a3

∫
∞

τ
e−b0s

·sin(ω(τ− s))I0

(
a
√

s2−ξ 2λ1

)
ds

for τ > ξ
√

λ1 .

(A1)

We suppose here

A =
∫

∞

ξ

√
λ1

e−b0s cos(ω(τ− s))√
s2−ξ 2λ1

· I1

(
a
√

s2−ξ 2λ1

)
ds

(A2)

and

B =
∫

∞

ξ

√
λ1

e−b0s sin(ω(τ− s))√
s2−ξ 2λ1

· I1

(
a
√

s2−ξ 2λ1

)
ds .

(A3)

Adding (A2) and (A3), we get

A+ iB = eiωτ

∫
∞

ξ

√
λ1

exp
(
−
(
b0 + iω

)
s
)√

s2−ξ 2λ1

· I1

(
a
√

s2−ξ 2λ1

)
ds .

(A4)

Now, by making the substitution√
s2−ξ 2λ1 = z , s ∈

[
ξ

√
λ1,∞

)
, z ∈

[
0,∞

)
,√

s2−ξ 2λ1 = z , ds =
zdz√

z2 +ξ 2λ1

(A5)

into (A4), we arrive at the following equation:

A+ iB = eiωτ

∫
∞

0

exp
(
− (b0 + iω)

√
z2 +ξ 2λ1

)
√

z2 +ξ 2λ1

· I1(az)dz .

(A6)

Using the relation (see (A5), Appendix A in [19])

∫
∞

0

exp
(
−a
√

X2 +Y 2
)

√
X2 +Y 2

XI0 (bX) dX

=
exp
(
−Y
√

a2−b2
)

√
a2−b2

, Re(a2−b2) > 0 ,

(A7)

in (A6), one obtains the form

A+ iB =
(√

λ1 eiωτ exp
(
−ξ

√
λ1

√
(b0+iω)2−a2

))
·
(√

λ1
(
(b0 + iω)2−a2

))−1

. (A8)

By making the substitution√
λ1
(
(b0 + iω)2−a2

)
= m+ in , (A9)

(A8) reduces to the following form:

A+ iB =
√

λ1 exp(−mξ )
m2 +n2

[
mcos(ωτ−ξ n)

+nsin(ωτ−ξ n)+ i
(
msin(ωτ−ξ n)

−ncos(ωτ−ξ n)
)]

.

(A10)

Separating real and imaginary parts, we get

A =
√

λ1 exp(−mξ )
m2 +n2

[
mcos(ωτ−ξ n)

+nsin(ωτ−ξ n)
]
,

(A11)

B =
√

λ1 exp(−mξ )
m2 +n2

[
msin(ωτ−ξ n)

−ncos(ωτ−ξ n)
]
.

(A12)

Now using (A5) in the first integral of (A1), we obtain∫
τ

ξ

√
λ1

exp

((
1
λ1
−b0

)
s
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I0

(
a
√
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(A13)
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Substituting (A11) – (A13) into (A1), and then separat-
ing steady state and transients parts, we get

Scs(ξ ,τ) =
√

λ1 exp(−mξ )
m2 +n2

[
−a2

(
mcos(ωτ−ξ n)

+nsin(ωτ−ξ n)
)

+a3
(
msin(ωτ−nξ )−ncos(ωτ−nξ )

)]
,

(A14)

the shear stress corresponding to the steady state,
whereas

Sct(ξ ,τ) =
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is the corresponding transient shear stress. Similarly
for the sine case, we write the steady-state and tran-
sient parts as

Sss(ξ ,τ) =−exp(−mξ )
m2 +n2

[
a2
(
msin(ωτ−nξ )

−ncos(ωτ−nξ )
)
a3 (A16)

·
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)]
,
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(A17)
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