A New Reliable Approach for Two-Dimensional and Axisymmetric
Unsteady Flows Between Parallel Plates

Sushila?, Jagdev Singh®, and Yadvendra S. Shishodia®

2 Department of Physics, Jagan Nath University, Village-Rampura, Tehsil-Chaksu, Jaipur-

303901, Rajasthan, India

b Department of Mathematics, Jagan Nath University, Village-Rampura, Tehsil-Chaksu,

Jaipur-303901, Rajasthan, India

¢ Pro-Vice-Chancellor, Jagan Nath University, Village-Rampura, Tehsil-Chaksu, Jaipur-303901,

Rajasthan, India

Reprint requests to S.; E-mail: sushila.jag@gmail.com

Z. Naturforsch. 68a, 629 —634 (2013) / DOI: 10.5560/ZNA.2013-0048
Received February 6, 2013 / revised May 24, 2013 / published online August 21, 2013

The main aim of this work is to present a new reliable approach to compute an approximate so-
lution of the system of nonlinear differential equations governing the problem of two-dimensional
and axisymmetric unsteady flows due to normally expanding or contracting parallel plates by the
homotopy perturbation method, and the Sumudu transform is adopted in the solution procedure. The
method finds the solution without any discretization or restrictive assumptions and avoids the round-
off errors. The numerical solutions obtained by the proposed technique indicate that the approach is

easy to implement and computationally very attractive.
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1. Introduction

The problem of unsteady squeezing of a viscous
incompressible fluid between two parallel plates in
motion normal to their own surfaces independent of
each other and arbitrary with respect to time is a fun-
damental type of unsteady flow which is met fre-
quently in many hydrodynamical machines and appa-
ratuses. Some practical examples of squeezing flow
include polymer processing, compression, and injec-
tion molding. In addition, the lubrication system can
also be modelled by squeezing flows. The poineer-
ing work on squeezing flow by using lubrication ap-
proximation was conducted by Stefan [1]. Further,
Reynolds [2] derived a solution for elliptic plates, and
Archibald [3] investigated this problem for rectangu-
lar plates. The theoretical and experimental studies
of squeezing flows have been conducted by many re-
search workers [4— 14]. Earlier studies of squeezing
flow are based on Reynolds equation. The inadequacy
of Reynolds equation in the analysis of porous thrust
bearings and squeeze films involving high velocity has
been demonstrated by Jackson [13], Ishizawa [14], and
others. The general study of the problem with full

Navier—Stokes equations involves extensive numerical
study requiring more computer time and larger mem-
ory. However, many of the important features of this
problem can be grasped by prescribing the relative ve-
locity of the plates suitably. If the relative normal ve-
locity is proportional to (1 — ar)'/2, where # is the time
and o a constant of dimension [T~!] which charac-
terizes unsteadiness, then the unsteady Navier—Stokes
equations admit a similarity solution.

The homotopy perturbation method (HPM) was
first introduced by the Chinese researcher J. H. He in
1998, and was further developed by him [15-20].
The HPM is in fact a coupling of the traditional per-
turbation method and homotopy in topology [21].
This method was applied to axisymmetric flow over
a stretching sheet [22], thermal boundary-layer prob-
lems in a semi-infinite plate [23], nonlinear Jeffery—
Hamel flow [24], coupled nonlinear partial differen-
tial equations [25], Abel integral equation [26], peri-
staltic flow of a magnetohydrodynamic (MHD) New-
tonian fluid in an asymmetric channel [27], MHD
flow over anonlinear stretching sheet [28], general-
ized Burger and Burger—Fisher equations [29], wave
and nonlinear diffusion equations [30], time-fractional
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reaction-diffusion equation of Fisher type [31], mo-
tion of a spherical solid particle in plane coquette fluid
flow [32], and heat transfer of copper—water nanofluid
flow between parallel plates [33]. Natural convection
heat transfer of a copper—water nanofluid in a cold
outer circular enclosure containing a hot inner sinu-
soidal circular cylinder in the presence of a horizon-
tal magnetic field was investigated numerically us-
ing the control volume based finite element method
(CVFEM) [34]. Natural convection in a concentric an-
nulus between a cold outer square and heated inner
circular cylinders in presence of a static radial mag-
netic field was investigated numerically using the lat-
tice Boltzmann method [35]. Mixed convection of
a nanofluid consisting of water and SiO; in an in-
clined enclosure cavity was studied numerically [36].
The variational iteration method (VIM) was applied to
solve the nonlinear settling particle equation of mo-
tion [37]. In recent years, many authors have paid at-
tention to study the solutions of linear and nonlinear
partial differential equations by using the HPM with
the Laplace transform [38, 39] and the Sumudu trans-
form [40].

The objective of this paper is to present a simple re-
cursive algorithm based on the homotopy perturbation
method, Sumudu transform method, and He’s poly-
nomials, and is mainly due to Ghorbani and Saberi-
Nadjafi [41] and Ghorbani [42] which produce the se-
ries solution of the two-dimensional and axisymmet-
ric unsteady flows due to normally expanding or con-
tracting parallel plates. The advantage of this technique
is its capability of combining two powerful methods
for obtaining exact and approximate analytical solu-
tions for nonlinear equations. It is worth mentioning
that the proposed method is capable of reducing the
volume of the computational work as compared to
the classical methods while still maintaining the high
accuracy of the numerical result; the size reduction
amounts to an improvement of the performance of the
approach.

2. Sumudu Transform

The Sumudu transform [43] is defined over the set
of functions

A= {f(l)BM, 11,7 > 0,|f(1)] < M/ T,

if 1€ (—1)/ x [o,oo)}
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by the following formula:

Fuy=slf0] = [ fnear, ue (—n,m). M

For further detail and properties of this transform,
see [44—-49].

3. Basic Idea of Homotopy Perturbation Method
Using Sumudu Transform

To illustrate the basic idea of this method, we con-
sider a general nonlinear non-homogenous partial dif-
ferential equation of the form

LU +RU +NU =g(x), 2

where L is the highest-order linear differential opera-
tor, R is the linear differential operator of less order
than L, N represents the general nonlinear differen-
tial operator, and g(x) is the source term. By apply-
ing the Sumudu transform on both sides of (2), we
get

U
u

n—1 rr(k) (0)

SU =" 3, —— +u"S[g(x)] —u"S[RU +NU]
k=0

=0. 3

Now applying the inverse Sumudu transform on both
sides of (3), we get

U=G(x)—S"[u"S[RU+NU]| )
where G(x) represents the term arising from the source

term and the prescribed initial conditions. Now, we ap-
ply the HPM

U= 3 p"Un ©)
and the nonlinear term can be decomposed as

NU=Y p"Hy, ©)

m=0

for some He’s polynomials that are given by

" o
Hm(Uo’Ul"”’Um)m!&p’"[N(zaplUi)] 0’
i= p=

m=0,1,2,3,.... )
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Substituting (5) and (6) in (4), we get

S P"Un=G(x)—p (sl {M"S {R Y, p"Un
m=0 =

— m=0
+) p’”Hm} D : ®)
m=0

which is the coupling of the Sumudu transform and the
HPM using He’s polynomials. Comparing the coeffi-
cient of like powers of p, the following approximations
are obtained:

p°:Up(x) = G(x),
P Un(x) = _s51 {M"S [RUmq (x) Jerl(U)H ,
m=1,23,.... )

Finally, we approximate the analytical solution U by
truncated series

N
U=lim Y Uy.

(10)
N_mm 0

The above series solutions generally converge very

rapidly. A classical approach of convergence of this

type of series is already presented by Abbaoui and

Cherruault [50].

4. Mathematical Formulation

Let the position of the two plates be at z = +£(1 —
o) 1/2, where / is the position at time ¢ = 0 as depicted
in Figure 1. We consider that the length 1 (in the two-
dimensional case) or the diameter D (in the axisym-
metric case) is much larger than the gap width 2z at
any time such that the end effects can be neglected.

zZ

20(1 - at)?

Fig. 1. Schematic diagram of the problem.

When o is positive, the two plates are squeezed un-
til they touch at # = 1/a. When « is negative, the two
plates are separated. Let U, V, and W be the veloc-
ity components along x—, y—, and z-axis, respectively.
For a two-dimensional flow, Wang introduced the fol-
lowing transform [51]:

ox

U= mf(ﬂ% -
ol
W - _4[2(1 —(Xt)l/z] f(n)>
where
n= < (12)

[t —an)72]

Substituting (11) into the unsteady two-dimensional
Navier—Stokes equations transform nonlinear differen-
tial equation in the form

f////+s{_nf///_3f//_f/f//+ff///}:O7 (13)
where s = af? /2v (squeeze number) is the non-
dimensional parameter. The flow is characterized by
this parameter. The boundary conditions are such that
on the plates, the lateral velocities are zero and the nor-
mal velocity is equal to the velocity of the plate, that is,

f0)=0, f(0)=0, f(1)=1, f(1)=0.  (14)

L50 ——_
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Fig. 2 (colour online). Influence of positive s on f'(n) for the
two-dimensional case for § = 1.
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Fig. 3 (colour online). Influence of negative s on f/(n) for
the axisymmetric case for § = 0.

Similarly, Wang’s transforms [51] for axisymmetric
flow are

_ ox / _ oy /
al (15)
W= “Ri—a)] fm).

Using transforms (15), the unsteady axisymmetric
Navier—Stokes equations reduce to

f////_"_s{_nf///_sf//+ff///}:O’ (16)
subjected to the boundary conditions (14).

Consequently, we should solve the nonlinear ordi-
nary differential equation

f//”"'s{_nf”/_3f”_ﬁflf//+ff”l}:0, (17)
where
0, Axisymmetric,
B= Y (18)
1, Two-dimensional,

and subject to the boundary conditions (14). The two-
dimensional and axisymmetric unsteady flows due to
normally expanding or contracting parallel plates have
also been studied by Dinarvand and Moradi [52].

Fig. 4 (colour online). Skin fraction f”(1) for the axisymmet-
ric and two-dimensional cases.

5. Solution of the Problem

In this section, we apply the homotopy perturbation
method using the Sumudu transform to obtain an ap-
proximate solution of (17). By applying the Sumudu
transform on both sides of (17), we have

S[F(n)] = au+bu3 —u4S{s{ —rlf’”_?,f”

(19
~Br 1
The inverse Sumudu transform gives
F(n) =an+ lbn3 _S—l [M4S[s{ _ nf/// _3f//
6 (20)
_Bf/fll+ff/ll}:|:| .
Now applying the HPM, we get
- 1
3, V() =an + b’ @1
m=0

—s! {u“s {s(— n Y " m =3 p"fn)
m=0 m=0

‘ﬁ,,go”mH'"("” S ) ||

m=0

where H,(n) and H,,(n) are He’s polynomials that
represents the nonlinear terms. So, He’s polynomials
are given by
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> p"Ha(n)=ff". (22)
m=0

The first few components of He’s polynomials, are
given by

Ho(n) = fo(m)fo (M),

23
H(n) = A ) + ), &
and for H),(7n), we find that
> P H,(n) = f(n)f" (), (24)
m=0
Hy(n) = fo(n)f'(n), 25)

Hi(n) = fo(m) A" M)+ filn)fy' (),

Comparing the coefficients of like powers of p, we
have

1
P’ fo=an +8bn3, (26)
bs(a—aP —4) b*s(3B—1)
Lo _ 5 7 (27)
pih 120 5040 1
2 2 2
2. . s“(1la—3af—4-2a"+2a"B)b ,
prif= 5040 n
_ $*(5a—5aP — 20— 9bp — 53b—2abP + 10ab)b
362880 n
s?(28 —42B + 18bB — 6b)b* |, 28)
39916800 ’

where a = f'(0) and b = f’(0) are to be determined
from the boundary conditions. The solutions of (17),
when p — 1, will be as follows:

fm)=fom+fAm)+fr(n)+---. (29)

6. Results and Discussion

In this paper, we have applied the homotopy pertur-
bation method using the Sumudu transform for solving
two-dimensional and axisymmetric unsteady flows due
to normally expanding or contracting parallel plates.
Our main purpose is to find the various values of f(n)
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Fig.5 (colour online). Pressure gradient f”/(1) for the ax-
isymmetric and two-dimensional cases.
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in Figures 4 and 5, respectively.

7. Conclusions

In this paper, the homotopy perturbation method us-
ing the Sumudu transform has been successfully ap-
plied for solving two-dimensional and axisymmetric
unsteady flows due to normally expanding or contract-
ing parallel plates. Graphical results are presented to
investigate the effect of squeeze number on the veloc-
ity, skin friction, and pressure gradient. The proposed
method requires less computational work as compared
to other analytical methods. In conclusion, the homo-
topy perturbation method using the Sumudu transform
may be considered as a nice refinement in existing nu-
merical techniques and might find wide applications.

[4] R.J. Grimm, Appl. Scient. Res. 32, 149 (1976).
[S] W. A. Wolfe, Appl. Scient. Res. 14, 77 (1965).
[6] D.C. Kuzma, Appl. Scient. Res. 18, 15 (1968).


http://dx.doi.org/10.1098/rstl.1886.0005
http://dx.doi.org/10.1007/BF00383711
http://dx.doi.org/10.1007/BF00382232
http://dx.doi.org/10.1007/BF00382330
http://dx.doi.org/10.1007/BF00382330

634
(7]
(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

Sushila et al. - Two-Dimensional and Axisymmetric Unsteady Flows Between Parallel Plates

J. A. Tichy and W. O. Winer, Trans. ASME J. Lub.
Tech. 92, 588 (1970).

C.Y. Wang and L. T. Watson, Appl. Scient. Res. 32,
195 (1979).

R. Usha and R. Sridharan, Fluid Dyn. Res. 18, 35
(1996).

Y. Khan, Q. Wu, N. Faraz, A. Yildirnm, and S. T.
Mohyud-Din, Z. Naturforsch. 66a, 507 (2011).

M. H. Hamdan and R. M. Barron, Appl. Scient. Res.
49, 345 (1992).

N. Phan-Thien, J. Non-Newton. Fluid Mech. 95, 343
(2000).

J. D. Jackson, Appl. Scient. Res. A 11, 148 (1963).

S. Ishizawa, Bull. Japan Soc. Mech. Eng. 9, 533 (1966).
J. H. He, Comp. Meth. App. Mech. Eng. 178, 257
(1999).

J. H. He, J. Sound. Vib. 229, 1257 (2000).

J. H. He, Appl. Math. Comput. 135, 73 (2003).

J. H. He, Appl. Math. Comput. 151, 287 (2004).

J. H. He, Appl. Math. Comput. 156, 527 (2004).

J. H. He, Phys. Lett. A 350, 87 (2006).

J. H. He, Int. J. Non-Lin. Mech. 35, 37 (2000).

P. D. Ariel, T. Hayat, and S. Asghar, Int. J. Nonlinear
Sci. Numer. Simul. 7, 399 (2006).

Z.7. Ganji and D. D. Ganji, Int. J. Nonlinear Sci. Nu-
mer. Simul. 9, 415 (2008).

Z.Z. Ganji, D. D. Ganji, and M. Esmaeilpour, Comput.
Math. Appl. 58, 2107 (2009).

N. H. Sweilam and M. M. Khader, Comput. Math.
Appl. 58, 2134 (2009).

S. Kumar and O. P. Singh, Z. Naturforsch. 65a, 677
(2010).

A. Yildinnm and S. A. Sezer, Math. Comput. Modell.
52,618 (2010).

A. Yildirim and S. A. Sezer, Z. Naturforsch. 65a, 1106
(2010).

M. M. Rashidi, D. D. Ganji, and S. Dinarvand, Numer.
Meth. Part. Diff. Egs. 25, 409 (2009).

C. Chun, H. Jafari, and Y. I. Kim, Comput. Math. Appl.
57, 1226 (2009).

(31]
(32]
(33]

[34]

[35]
(36]

(37]
(38]

(39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

[47]
(48]

[49]
[50]

[51]
[52]

N. A. Khan, M. Ayaz, N. U. Khan, and L. Jin, Int. J.
Phy. Sci. 6, 2483 (2011).

S. M. Hamidi, Y. Rostamiyan, D. D. Ganji, and A. Fer-
eidoon, Adv. Powd. Tech. 24, 714 (2013).

M. Sheikholeslami and D. D. Ganji, Powd. Tech. 235,
873 (2013).

M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, S.
Soleimani, and S. M. Seyyedi, Int. J. Commun. Heat
Mass Trans. 39, 1435 (2012).

M. Sheikholeslami, M. Gorji-Bandpy, and D. D. Ganji,
Int. J. Commun. Heat Mass Trans. 39, 978 (2012).

M. Alinia, D. D. Ganji, and M. Gorji-Bandpy, Int. J.
Commun. Heat Mass Trans. 38, 1428 (2011).

D. D. Ganji, J. Hydro-environ. Res. 6, 323 (2012).

S. Kumar, A. Yildirim, and Y. Khan, Scientia Iran. 19,
1117 (2012).

S. Kumar, H. Kocak, and A. Yildirim, Z. Naturforsch.
67a, 389 (2012).

J. Singh, D. Kumar, and Sushila, Adv. Theor. Appl.
Mech. 4, 165 (2011).

A. Ghorbani and J. Saberi-Nadjafi, Int. J. Nonlin. Sci.
Numer. Simul. 8, 229 (2007).

A. Ghorbani, Chaos Solitons Fract. 39, 1486 (2009).
G. K. Watugala, Math. Eng. Indust. 6, 319 (1998).

M. A. Asiru, Int. J. Math. Edu. Sci. Tech. 32, 906
(2001).

F. B. M. Belgacem, A. A. Karaballi, and S. L. Kalla,
Math. Prob. Eng. 3, 103 (2003).

F. B. M. Belgacem and A. A. Karaballi, Int. J. Appl.
Math. Stoch. Anal. 1, 23 (2005).

F. B. M. Belgacem, Nonlin. Stud. 13, 23 (2006).

A. Kilicman, H. Eltayeb, and Mohd. Atan Kamel Arif-
fin, Bull. Iran. Math. Soc. 37, 131 (2011).

A. Kilicman and H. Eltayeb, J. Frank. Inst. 347, 848
(2010).

K. Abbaoui and Y. Cherruault, Comput. Math. Appl.
29, 103 (1995).

C. Y. Wang, Amer. Soc. Mech. Eng. 43, 579 (1976).

S. Dinarvand and A. Moradi, J. Appl. Math.
doi:10.1155/2012/938624, (2012).


http://dx.doi.org/10.1115/1.3451480
http://dx.doi.org/10.1115/1.3451480
http://dx.doi.org/10.1007/BF00382705
http://dx.doi.org/10.1007/BF00382705
http://dx.doi.org/10.1016/0169-5983(96)00002-0
http://dx.doi.org/10.1016/0169-5983(96)00002-0
http://dx.doi.org/10.5560/ZNA.2011-0008
http://dx.doi.org/10.5560/ZNA.2011-0008
http://dx.doi.org/10.1007/BF00419980
http://dx.doi.org/10.1007/BF00419980
http://dx.doi.org/10.1016/S0377-0257(00)00175-0
http://dx.doi.org/10.1016/S0377-0257(00)00175-0
http://dx.doi.org/10.1299/jsme1958.9.533
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1006/jsvi.1999.2509
http://dx.doi.org/10.1016/S0096-3003(01)00312-5
http://dx.doi.org/10.1016/S0096-3003(03)00341-2
http://dx.doi.org/10.1016/j.amc.2003.08.008
http://dx.doi.org/10.1016/j.physleta.2005.10.005
http://dx.doi.org/10.1016/S0020-7462(98)00085-7
http://dx.doi.org/10.1515/IJNSNS.2006.7.4.399
http://dx.doi.org/10.1515/IJNSNS.2006.7.4.399
http://dx.doi.org/10.1515/IJNSNS.2008.9.4.415
http://dx.doi.org/10.1515/IJNSNS.2008.9.4.415
http://dx.doi.org/10.1016/j.camwa.2009.03.044
http://dx.doi.org/10.1016/j.camwa.2009.03.044
http://dx.doi.org/10.1016/j.camwa.2009.03.059
http://dx.doi.org/10.1016/j.camwa.2009.03.059
http://dx.doi.org/10.1016/j.mcm.2010.04.007
http://dx.doi.org/10.1016/j.mcm.2010.04.007
http://dx.doi.org/10.1002/num.20350
http://dx.doi.org/10.1002/num.20350
http://dx.doi.org/10.1016/j.camwa.2009.01.013
http://dx.doi.org/10.1016/j.camwa.2009.01.013
http://dx.doi.org/10.1016/j.apt.2012.11.003
http://dx.doi.org/10.1016/j.apt.2012.11.003
http://dx.doi.org/10.1016/j.powtec.2012.11.030
http://dx.doi.org/10.1016/j.powtec.2012.11.030
http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.07.026
http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.07.026
http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.07.026
http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.05.020
http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.05.020
http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.08.003
http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.08.003
http://dx.doi.org/10.1016/j.jher.2012.04.002
http://dx.doi.org/10.1016/j.scient.2012.06.016
http://dx.doi.org/10.1016/j.scient.2012.06.016
http://dx.doi.org/10.5560/ZNA.2012-0038
http://dx.doi.org/10.5560/ZNA.2012-0038
http://dx.doi.org/10.1515/IJNSNS.2007.8.2.229
http://dx.doi.org/10.1515/IJNSNS.2007.8.2.229
http://dx.doi.org/10.1016/j.chaos.2007.06.034
http://dx.doi.org/10.1080/002073901317147870
http://dx.doi.org/10.1080/002073901317147870
http://dx.doi.org/10.1155/S1024123X03207018
http://dx.doi.org/10.1155/S1024123X03207018
http://dx.doi.org/10.1016/j.jfranklin.2010.03.008
http://dx.doi.org/10.1016/j.jfranklin.2010.03.008
http://dx.doi.org/10.1016/0898-1221(95)00022-Q
http://dx.doi.org/10.1016/0898-1221(95)00022-Q
http://dx.doi.org/10.1155/2012/938624

	A New Reliable Approach for Two-Dimensional and Axisymmetric Unsteady Flows Between Parallel Plates
	1 Introduction
	2 Sumudu Transform
	3 Basic Idea of Homotopy Perturbation Method Using Sumudu Transform
	4 Mathematical Formulation
	5 Solution of the Problem
	6 Results and Discussion
	7 Conclusions


