Computing the Edge-Neighbour-Scattering Number of Graphs
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A set of edges X is subverted from a graph G by removing the closed neighbourhood N[X] from G.
We denote the survival subgraph by G/X. An edge-subversion strategy X is called an edge-cut strat-
egy of G if G/X is disconnected, a single vertex, or empty. The edge-neighbour-scattering number
of a graph G is defined as ENS(G) = max{w(G/X) — |X| : X is an edge-cut strategy of G}, where
®(G/X) is the number of components of G/X. This parameter can be used to measure the vulnerabil-
ity of networks when some edges are failed, especially spy networks and virus-infected networks. In
this paper, we prove that the problem of computing the edge-neighbour-scattering number of a graph
is NP-complete and give some upper and lower bounds for this parameter.
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1. Introduction

In this paper, we use [1] and [2] for terminology and
notations not defined here and consider finite, simple,
and undirected graphs only.

The concept of spy network was introduced by
Gunther and Hartnell [3, 4]. They modelled a spy net-
work by a graph whose vertices represent the stations
and whose edges represent the lines of communica-
tion. The most important property of spy networks
is that, if a station is destroyed, the adjacent sta-
tions will be betrayed and so the betrayed stations be-
come useless to the network as a whole. Therefore,
instead of considering the vulnerability or invulnera-
bility of a network in the classic sense, a number of
other related parameters were introduced to deal with
this circumstance, including vertex-neighbour connec-
tivity [4], edge-neighbour connectivity [5], vertex-
neighbour integrity [6], edge-neighbour integrity [7],
vertex-neighbour-scattering number [8], and edge-
neighbour-scattering number [9]. The common ground
of these parameters is that, when removing some

vertices (or edges) from a graph, all of their adja-
cent vertices (or edges) are removed. It is shown that
these parameters have theoretical as well as applied
significance in the design and analysis of networks
such as spy networks and virus-infected networks,
see [8, 9].

Let G = (V,E) be a graph and e = uv be an edge of
G. The edge e is said to be subverted if the edge e, all
of its incident edges, and the two ends of e, u and v, are
removed from G [10]. A set of edges X C E is called an
edge-subversion strategy of G if each of the edges in X
has been subverted. The survival subgraph is denoted
by G/X. An edge-subversion strategy X is called an
edge-cut strategy of G if G/X is disconnected, a single
vertex, or empty.

Let G be a graph. The edge-neighbour connectiv-
ity of G, denoted by A(G), is the minimum size of all
edge-cut strategies of G. An edge-dominating set D of
G is a set of edges such that every edge not in D is ad-
jacent to an edge in D. The edge-domination number
of G is defined to be Y (G) = min{|D| : D is an edge-
dominating set of G}.
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The edge-neighbour-scattering number of a graph
G is defined as

ENS(G) = max{o(G/X) — |X| :
X is an edge-cut strategy of G},

where @(G/X) stands for the number of compo-
nents of G/X. We call X* C E(G) an edge-neighbour-
scattering set (ENS-set) of G if ENS(G) = o(G/X*) —
X°].

The concept of edge-neighbour-scattering number
was introduced in [9]. Some properties of this param-
eter as well as some of its applications were discussed
there when it is used to measure the vulnerability of
networks. In this paper, we prove that the problem
of computing the edge-neighbour-scattering number of
a graph is NP-complete and give some upper and lower
bounds of edge-neighbour-scattering number via some
other well-known graphic parameters.

2. Computing Edge-Neighbour-Scattering Number
is NP-Complete

It is of prime importance to determine the edge-
neighbour-scattering number of a graph. In this sec-
tion, we will investigate the complexity for computing
the edge-neighbour-scattering number of a graph.

Problem 1. EDGE-NEIGHBOUR-SCATTERING
NUMBER

Instance: A graph G; and an integer k.

Question: Does there exist an edge-cut strategy X of G
such that o(G/X) — |X| > k?

We solve this complexity problem by considering
the following

Problem 2. EDGE-DOMINATION NUMBER
Instance: A bipartite graph G; and a positive integer d.
Question: Does there exist an edge-dominating set D
of G such that |D| < d?

It was proved by Yannakakis and Gavril [11] that
the problem EDGE-DOMINATION NUMBER is NP-
complete. Based on this conclusion, we prove that the
problem EDGE-NEIGHBOUR-SCATTERING NUM-
BER is also NP-complete.

Theorem 1. EDGE-NEIGHBOUR-SCATTERING
NUMBER is NP-complete.
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Proof. Let G = (V,E) be abipartite graph with order n.
Denote V = {vy,va,...,v, }. Replace each vertex v; €
V by a copy of a complete graph K,,, and denote this
copy by G;. Select a vertex from G;, and denote it by
vi(i=1,2,...,n). Add edges v;‘v;‘- if viv; € E. Denote
the resulting graph by G* (An example of G and G* in
case n =5 is shown in Figure 1).

For convenience, denote the subgraph induced by
{vi,v5,...,vi} in G* as G'. Obviously, G’ = G. As-
sume that X* is an ENS-set of G*, i.e., ENS(G*) =
o(G*/X*) —|X*|, and D is a smallest edge dominat-
ing set of G.

Clearly, EDGE-NEIGHBOUR-SCATTERING
NUMBER is in the class NP. We now prove that
ENS(G*) = n — |D|. By the construction of G*,
and the NP-completeness of EDGE-DOMINATION
NUMBER, this is sufficient for the conclusion.

Claim 1. If e is an edge in G; which is not incident with
vi,theneg X*,i=1,2,...,n.

Proof. Otherwise, denote X** = X*\ {e}. Notice that
Gi/{e} = K, and v} is still in G;/{e}. So we have
o(G*/X*) = o(G*/X™). But |X**| = |X*| — 1, thus
o(G*/X**) — |X*| > o(G*/X*) — |X*|. This is con-
tradictory to that X* is an ENS-set of G*. O

Claim 2. Let Ef = {e: e € E(G;) and ¢ is incident with
vi}. Then |[EfNX*|<1fori=1,2,...,n.

Proof. Suppose that, for some i, |[Ej N X*| > 2. With-
out loss of generality, assume that e, f € Ef NX* and
e # f. Denote X** = X*\ {e}. Since G;/{e,f} =
Ky,—3 and G;/{f} = K,—2, we have o(G"/X*) <
o(G*/X**). But |X**| = |X*| — 1, thus we have
o(G*/X*™) — |X**| > o(G*/X*) — |X*|. This is con-
tradictory to that X* is an ENS-set of G*. O

G G*
Fig. 1. Graphs G and G*.
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Claim 3. There exists an ENS-set X of G* such that
E(G*/X)NE(G')=0and X CE(G).

Proof. Suppose that X* is an ENS-set of G* such that
E(G*/X*)NE(G') # 0. Without loss of generality,
we assume v;v; € E(G*/X*) NE(G'). Then any edge
which is incident with v} or v* is not in X*. By Claim 1,
any edge of E(G;) UE(Gj) is not in X*. Therefore,
G;,Gj and v;v; belong to one component of G* /X*.
Let X** = X" U{v/v}}. Then we have

o(G*/X™) > o(G*/X") +1
and

o(G*/X™) = |X™| > o(G*/X*)+1— (IX*]| +1)
= (G /X") —|X"|.

On the other hand, since X** is an edge-cut strategy of
G*, we have

o(G'/X™) - X7 < o(G"/X7) — |X7|.
Thus
o(G* /X)) —|X"| = o(G*/X") —|X*| = ENS(G").

This implies that X** is also an ENS-set of G*. There-
fore, if we add all the edges of E(G*/X)NE(G') to X,
we then get an ENS-set X of G* such that E(G*/X) N
E(G') = 0. In other words, there always exists an ENS-
set X of G* such that all the edges of G’ are in X or
adjacent to some edges of X.

Let X* be an ENS-set of G*. By Claims 1 and
2, we then need only to prove that E N X* = @ for
i=1,2,...,n. Suppose that Ef N X* # 0 for some i.
Assume ¢; € Ef N X*. Then any edge in E(G’) which
is incident with v; must be not in X*. Otherwise, let
X** =X*\{e;}. Then we have

o(G"/X") = o(G*/X™), X7 = [X*[ -1
and
o(G*/X™) = X[ > o(G"/X") - [X7|.
This is contradictory to that X* is an ENS-set of G*. [J

Claim 3 implies that, there exists an ENS-set X*
of G* such that X* is also an edge dominating set of
G'. Thus we have o(G*/X*) = n, i.e., ENS(G*) =
o(G*/X*) — |X*| =n—|X¥|.
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Note that D is a smallest edge dominating set of G
and G’ = G. So, the edge set corresponding to D in G/
is also a smallest edge dominating set of G’. Therefore,
|X*| > |D|. We have

ENS(G*) =n—|X*| <n—|D|.

On the other hand, since D is a smallest edge dominat-
ing set of G, the edge set corresponding to D in G’ is an
edge-cut strategy of G* and 0(G*/X*) = n. Thus we
have

ENS(G*) > o(G* /D) — |D| =n—|D|.

Therefore, we have ENS(G*) = n — |D|. The proof is
complete. O

3. Lower and Upper Bounds for
Edge-Neighbour-Scattering Number

In this section, we give some lower and upper
bounds for edge-neighbour-scattering number in terms
of other well-known graphic parameters.

Theorem 2. Let G be a connected graph with order
n > 5, and M be a maximum but not perfect matching
of G. Denote the set of the unsaturated vertices on M
as V*, and assume that §* = min,cy+«{dg(v)}. Then
ENS(G) >2— 6"

Proof. Let w be a vertex in V* such that d(w) = 6*.
Denote N(w) = {uy,uz,...,us } and |M| = m. It is ob-
vious that m > 1. Let M* = {e¢: e € M and e is inci-
dent with at least one vertex in N(w)}. We then have
|M*| < 6%,

Itis easy to know that |V*| > 1. For any edge uv € M
and x,y € V*, it is impossible that both of xu € E
and vy € E hold at the same time. Otherwise, there
exists an M-augmenting path xuvy in G, ie., M =
M\ {uv} U {xu,yv}, which is a matching of G greater
than M, a contradiction.

On the other hand, no two vertices in V* are adja-
cent. If not, let x and y be two vertices in V* such that
xy € E. Then M U {xy} is a matching of G greater than
M, contradicting to the choice of M. In other words,
every vertex of N(w) is incident with one of the edges
in M and M* is an edge-cut strategy of G.

We distinguish two cases for V* as follows.

Case 1. |V*| > 2.
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Obviously, ©(G/M*) > 2. So we have

ENS(G) > (G/M*) — |M*| > 2 — §*.

Case 2. |V*| = 1.
Case 2.1. 6* > m.

It is not difficult to know that M is an edge-cut strat-
egy of G, so we have

ENS(G) > o(G/M)—|M|=1-m>2—§".

Case 2.2. 6* < m.
Case 2.2.1. M* # M.
Since n > 5, we have o(G/M*) > 2 and

ENS(G) > (G/M*) — |M*| > 2 — §*.

Case 2.2.2. M* = M.

In this case, every vertex of N(w) is incident with
exactly one edge of M, and vise versa. Therefore,
d(w) = 6* = m. It follows from n > 5 that d(w) > 3.
Denote V' = V(G)\ N[w] = {vi,va,...,v} and the
subgraph induced by V' in G as G[V'].

Case 2.2.2.1. G[V'] is not a complete graph.

There exist two edges in M, say u;v; and u;v; such
that u; € N(w),u; € N(w) and v;v; € E. Denote M**
(M\{uvi,ujv;})J{wu;,wu;}. Then we have [M**| =
m and ©(G/M**) = 2. Thus ENS(G) > 2 — 8" holds.

Case 2.2.2.2. G[V'] is a complete graph.

Denote M = {ujvi,upva,...,umvm . If there exist
two vertices u; and v; such that i # j and u;v; € E. Let
M =MU{uv;}\{ujvi}. Then [M'| = 6" and G/M’ is
a subgraph of G which consists of two isolated vertices
v; and w. So we have

ENS(G) > o(G/M') — |M'| =2 —m=2—§".

If for any i # j, u;v; & E. Suppose that there exist
two vertices in N(w), say u; and u;, such that uu; ¢
E.Let X' =M\ {uyvi,ujv;} U{vjvj, wuy}, where k # i
and k # j. Then |X'| = m and G/X' is a subgraph of
G which consists of two isolated vertices u; and u;.
Therefore, we have

ENS(G) > o(G/X")—|X'|=2—-m=2—-6".

Computing the Edge-Neighbour-Scattering Number of Graphs

Suppose that any two vertices in N(w) are adja-
cent. Denote |5 | = k. When m is even, let X" =
{uruz, uzuy, ..., up_uy}. We have |X”| =k =% and

®(G/X") = 2. Therefore,
ENS(G) > o(G/X") - |X"|=2—k>2-6".

When m is odd, let X" = {wup,uzus,...,
Uok—1 Uk, UV }- We have @(G/X") =2 and |X"| < m.
Therefore,

ENS(G) > o(G/X") = |X"| >2—m>2—§".

The proof is complete. O

Remark 1. The lower bound in Theorem 2 is best pos-
sible. For example, when n > 7 and #n is odd, we have
0* =2 and ENS(C,) = 0.

Theorem 3. Let G be a graph with order n > 3 and
Y (G) be the edge domination number of G. Then
ENS(G) > max{1 —7(G),n—37(G)}.

Proof. The cases n = 3, 4 are trivial. Suppose that
n > 5 and D is a smallest edge dominating set of G.
Obviously, D is an edge-cut strategy of G. Let G[D]
be the subgraph induced by D in G. Then |V (G[D])| <
2Y(G). By the definition of edge-dominating set, we
know that G/D is empty or consists of isolated ver-
tices.

Case 1. G/D # 0.

It is easy to see that there are at least n — 2y (G)
isolated vertices in G/D. So we have

ENS(G) = o(G/D) —|D| = n—2Y(G) =Y (G)
=n—3Y(G).
On the other hand, if G/D # 0, then ®(G/D) > 1. Thus
ENS(G) > o(G/D) —|D| > 1-7(G).
So we have
ENS(G) > max{1—7(G),n—3Y(G)}.

Case 2. G/D =0.

Each vertex of V(G) is incident with an edge of D.
Assume that yv € D. Then it is impossible that both
u and v are incident with some edges of D except uv.
Otherwise, D\ {uv} is an edge-dominating set of G
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smaller than D, a contradiction. Since n > 3, there must
existan edge e € D such that N(e) N (E(G)\D) # 0. Let
D* = (D\ {e})U{f}, where f is an arbitrary edge of
N(e)N(E(G)\D). Then |D*| = ¥ (G) and G/D* is an
isolated vertex. So we have

ENS(G) > o(G/D") D" = 1 —/(G).

On the other hand, since G[D] is a spanning subgraph
of G, we have |V(G[D])| = n <2y (G). Therefore

1-Y(G)—(n—3Y(G)) =2Y(G) —n+1>0.
Therefore,
ENS(G) > 1 -7(G) = max{1 — Y (G),n - 37 (G)}..
The proof is complete. O

Remark 2. The lower bound n—37(G) in Theorem 3
is best possible. Let C,, be the cycle with order n (> 6)
and n = 0 (mod 3). Then we have ¥(C,) = % and
ENS(C,) = 0 = n—3Y/(C,). On the other hand, al-
though Cj attains the bound 1 — ¥/(G), we have not
found general examples to illustrate that this bound is
best possible.

Theorem 4. Let G be a connected graph with order
n and o/(G) be the matching number of G. Then
ENS(G) > n—30d/(G).

Proof. Assume that M is a maximum matching of G.
Then M is an edge-cut strategy of G. If G has a perfect
matching, then we have

M| =a/(G) =3, G/M=0,
and

ENS(G) > o(G/M) — M| = —o/(G) = _g.
The conclusion holds.

If G has no perfect matchings, then G/M consists of
only isolated vertices, and w(G/M) =n—20/(G). We
have

ENS(G) > o(G/M) — M| =n—-2d'(G) — /(G)
=n-30d'(G).

The proof is complete. O
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Remark 3. The lower bound in Theorem 4 is best pos-
sible. For example, the complete graphs with odd order
achieve this bound.

In the following, we give two upper bounds for the
edge-neighbour-scattering number.

Theorem 5. Let G be a connected graph with order
n and A(G) be the edge-neighbour-connectivity of G.
Then ENS(G) < n—1—2A(G).

Proof. Let X be an edge-cut strategy of G. Since X
subverted from G means deleting at least |X|+ 1 ver-
tices of G, we have

ENS(G) <n—(IX|+ 1)~ |X| <n—1-24(G).

Corollary 1. Let G be a connected graph with order
n>3. Then ENS(G) <n-—3.

Remark 4. The upper bound in Theorem 5 is best
possible. The stars and double stars can achieve this
bound.

4. Conclusions and Future Research

In this paper, we prove that the problem of comput-
ing the edge-neighbour-scattering number of a graph is
NP-complete and give some upper and lower bounds
for this parameter. Here we list some other related in-
teresting research problems.

Harary [12] determined the maximum and mini-
mum connectivity of graphs with given order and size
and also constructed corresponding extremal graphs,
which are now widely known as the Harary graphs.
Since then, finding the maximum or minimum value
of graphic parameters with given order and size has
become an attractive topic in graph theory. The oppo-
site problem is finding the maximum or minimum size
(order) when some parameters are given. It is natural
to consider these two types of problems for the edge-
neighbour-scattering number.

A Nordhaus—Gaddum type result is a (tight) lower
or upper bound for the sum or product of the val-
ues of a parameter for a graph and its complement.
Since Nordhaus and Gaddum [13] got the first result
of this type on the chromatic number of graphs, many
other similar results have been obtained (see [14] for
a survey). It is interesting to investigate the Nordhaus—
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Gaddum type result for the edge-neighbour-scattering
number.

As we have shown, the problem of computing the
edge-neighbour-scattering number of a graph is NP-
complete, so it is interesting to consider whether we
can find polynomial algorithms for computing this pa-
rameter of some special classes of graphs.
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