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This paper deals with the synchronization of spatiotemporal chaotic systems and presents a new
robust secondary chaotic secure communication system for digital signal transmissions which can re-
cover digital signal even though the transmitted signal is influenced by limited noise. The transmitter
terminal and the receiver terminal both contain a spatiotemporal chaotic system and a hyperchaotic
system. The asymptotic convergence of the errors between the states of the transmitter terminal and
the receiver terminal has been proved based on the Lyapunov stable theory and active–passive decom-
position (APD) method. Moreover, a random digital signal and a binary Lena image are encrypted and
decrypted successfully to verify the efficiency of the proposed robust secure communication system.
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1. Introduction

In 1990, Ott, Grebogi, and Yorke from Mary-
land University has completed to control chaotic sys-
tem using the Ott–Grebogi–Yorke (OGY) method [1].
Then, Pecora and Carroll implemented the synchro-
nization of two coupled isomorphism chaotic systems
using the circuit signal [2]. Because of the character-
istic properties such as noise-like signals and unpre-
dictability, chaotic systems are widely used in a va-
riety of areas such as chemical reaction, biological
system, secure communication, and so on. Moreover,
chaotic synchronization is becoming a hot research
field [3 – 5]. Typical secure communication methods
based on chaotic synchronization are divided into
chaotic mask, chaotic modulation, and chaotic-shift-
keying [6 – 11]. Recently, researchers have done a lot
of work on applying different chaotic synchronization
methods and chaotic systems to secure communica-
tion and chaotic maps and systems are widely used
in the secure communication scheme by researching
on chaos theory [12 – 18]. However, with the develop-
ment of low-dimensional chaotic systems, it is possi-
ble to infer the properties of low-dimensional chaotic
systems. Furthermore, high-dimensional hyperchaotic
systems or spatiotemporal chaotic systems have more

than one positive Lyapunov exponents and their prop-
erties are more complex [19 – 22]. So the synchroniza-
tion of high-dimensional hyperchaotic systems or spa-
tiotemporal chaotic systems possesses more applica-
tion prospects and development potentials.

The previous works always used the logistic map or
Hénon map as the secure communication system for
digital signals. In this paper, two new maps are taken
into consideration and a novel secondary chaotic se-
cure communication system which combines chaotic
mask and chaotic modulation is presented. At the
transmitter terminal, a parameter of the hyperchaotic
system is controlled by a signal of the spatiotemporal
chaotic system, and then the useful message is secretly
modulated in the hyperchaotic system. The resulting
signal is directly added into the chaotic state of the
spatiotemporal chaotic system and the output signal is
delivered through a public channel to the receiver ter-
minal. Due to the complex properties of the spatiotem-
poral chaotic system, the signal is difficult to be in-
tercepted. Even if it is intercepted, because of lack of
parameters of the spatiotemporal chaotic system and
the hyperchaotic system, it is impossible to decrypt the
signal.

The rest of this paper is organized as follows. A brief
description of the spatiotemporal chaotic system and
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the hyperchaotic system is presented in Section 2. Sec-
tion 3 outlines a new secure communication scheme
and the method of chaotic synchronization. Section 4
provides some numerical simulations to verify the va-
lidity of the proposed system. Finally, some concluding
remarks are given in Section 5.

2. System Descriptions

2.1. One-Way Coupled Map Lattice

Spatiotemporal chaotic systems are divided into the
coupled differential equations, the coupled map lattice,
and the cellular automaton based on the type of time
variables, space variables, and state variables. The one-
way coupled map lattice is typical, it is described by
the following set of equations:

xn+1(i) = (1− ε) f (xn(i))+ ε f (xn(i−1)) , (1)

where x is the state variable, ε is the coupled intensity,
n is the time index, i (i = 1,2, · · · ,L) is the site index,
and L is the lattice length. The boundary conditions are
periodic, and the local map f is described as

xn+1 =

{
a(2xn−1) , 0 < xn < 1 ,

a(2xn +1) , −1 < xn ≤ 0 .
(2)

Figure 1 depicts the bifurcation diagram of f .
From Figure 1, we can obtain that map (2) bifurcates
when a = 0.5, and for a > 0.72, it is chaotic. In this pa-
per, we choose a = 0.75 and x0 = 1/3. The largest Lya-
punov exponent is λ1 = 0.4108 which indicates that
the local map is chaotic. So we can get the following
chaotic map:

xn+1 =

{
1.5xn−0.75 , 0 < xn < 1 ,

1.5xn +0.75 , −1 < xn ≤ 0 .
(3)

If we choose conditions as ε = 0.5, a = 0.75, L = 30,
and n = 200, we can get the spatiotemporal chaotic sys-
tem. The spatiotemporal diagram is shown in Figure 2.

The largest Lyapunov exponent of xn(30) in the
spatiotemporal chaotic system is λ1 = 0.3431 which
presents that the signal xn(30) is chaotic when ε = 0.5,
a = 0.75.

Fig. 1. Bifurcation diagram of local map versus a.

2.2. Hyperchaotic System

In this paper, we choose the following map as
a chaotic map [23]:

yn+1 = 0.2+0.3yn +0.5zn , zn+1 =−1.6+ µy2
n , (4)

where µ is the coefficient of the nonlinear section, y
and z are the state variables, n is the time index. The
Lyapunov exponent spectrum of System (4) with 3 ≤
µ ≤ 4.5 is presented in Figure 3.

From Figure 3, we can see that when 3 ≤ µ ≤ 4.5,
System (4) is hyperchaotic. So signals of System (4)
are more complex and secure.

Fig. 2. Spatiotemporal diagram when ε = 0.5 and a = 0.75.
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Fig. 3. Lyapunov exponents spectrum of System (4) with 3≤
µ ≤ 4.5.

3. Secure Communication Scheme Description

3.1. The Description of the Transmitter Terminal and
the Receiver Terminal

In this paper, we define a communication scheme
which consists of a transmitter terminal and a receiver
terminal, and each terminal contains a spatiotemporal
chaotic system and a hyperchaotic system. The trans-
mitter terminal is defined as follows:

xn+1(1) = (1− ε) f (xn(1))+G ,

xn+1(2) = (1− ε) f (xn(2))+ ε f (xn(1)) ,
...

xn+1(i) = (1− ε) f (xn(i))+ ε f (xn(i−1)) ,
i = 2,3, · · · ,L ,

(5)

and

yu1,n+1 = 0.2+0.3yu1,n +0.5zu1,n ,

zu1,n+1 =−1.6+ µ1y2
u1,n ,

(6)

where f is described as System (2), G = r(mn) +
f (xn(L)), and r is a function which is related to the sig-
nal of the hyperchaotic system, mn is the transmission
signal, µ1 is a controller which is related to the signal
x(2) of System (5).

The receiver terminal is defined as follows:

sn+1(1) = (1− ε) f (sn(1))+G′ ,

sn+1(2) = (1− ε) f (sn(2))+ ε f (sn(1)) ,
...

sn+1(i) = (1− ε) f (sn(i))+ ε f (sn(i−1)) ,
i = 2,3, · · · ,L ,

(7)

and

yu2,n+1 = 0.2+0.3yu2,n +0.5zu2,n ,

zu2,n+1 =−1.6+ µ2y2
u2,n ,

(8)

where f is described as System (2), G′ = r(mn) +
f (xn(L))+0.01 ·sin(t), 0.01 ·sin(t) is the limited noise,
and µ2 is a controller which is related to the signal s(2)
of System (7).

3.2. APD Method

In 1990, Pecora and Carroll proposed the PC
method, then Kocarev and Parlitz proposed the active-
passive decomposition (APD) method [24] on the basis
of the previous work. With this method, we can select
the driving signal freely, and the systems will be com-
pleted synchronized. Therefore, the APD method can
be widely used in secure communication.

The driving system is defined as

xn+1 = f (xn,ξ ) , (9)

where ξ is the parameter of the driving system, f is the
iterated function system, xn is the state variable, and n
is the time index. When the system is chaotic, (9) is
translated to

xn+1 = Axn +Gn , (10)

Gn = f (xn,ξ )−Axn , (11)

where A is the coefficient matrix of the linear portion.
The response system is defined as

sn+1 = Asn +Gn , (12)

so the error system can be defined as

en+1 = Aen . (13)

Then choose a proper A, which will make every eigen-
value fits

∣∣λi
∣∣ < 1. According to the stable theory, the

error array {en} will converges, and synchronization
will be achieved.

3.3. Synchronization of the Spatiotemporal
Chaotic Systems

According to System (3), the definitional domain is
divided into (−1,0] and (0,1). Because of the ergod-
icity of chaotic orbit and the boundedness of noise, the
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following conditions will be satisfied along with the it-
erations sooner or later:

(i) xn(1)≈ sn(1) ,
(ii) xn(1) ,sn(1) ∈ (−1,0] or xn(1) ,sn(1) ∈ (0,1) .

So we can obtain f (xn(1))≈ f (sn(1)). If we choose
two suitable parameters a and ε which satisfy 0 <
2a(1 − ε) < 1 and define the error in lattice i as
en(i) = sn(i) − xn(i), we can infer that en+1(1) =
2a(1− ε)en(1) and en(1) will converge exponentially.

After converging of en(i), en(i + 1) is described as
en+1(i) = 2a(1− ε)en(i). When the following condi-
tions (which will be satisfied along with the iterations
sooner or later) are satisfied:

(i) xn(i)≈ sn(i) ,
(ii) xn(i) ,sn(i) ∈ (−1,0] or xn(i) ,sn(i) ∈ (0,1) ,

en(i+1) will converge exponentially.
Based on the preceding analysis, we find that one-

way coupled map lattices synchronize one by one.

3.4. Synchronization of Hyperchaotic Systems

Choose signal xn(3) of System (5) as driving signal,
then the systems (6) and (8) can be written as

yu1,n+1 = 0.2+0.3yu1,n +0.5zu1,n ,

zu1,n+1 =−1.6+ µ1x2
n(3)

(14)

and

yu2,n+1 = 0.2+0.3yu2,n +0.5zu2,n ,

zu2,n+1 =−1.6+ µ2s2
n(3) .

(15)

From Section 3.3, we can see that xn(2) = sn(2),
xn(3) = sn(3), so the error system of System (14) and
System (15) can be written as

euy,n+1 = 0.3euy,n +0.5euz,n ,

euz,n+1 = 0 .
(16)

It proved that System (16) will converge to zero.
We define the following Lyapunov function:

Vn =
∣∣euy,n

∣∣+ ∣∣euz,n
∣∣= ∣∣euy,n

∣∣≥ 0 , (17)

now, by taking the error System (16) into (17), we get
the following inequation:

∆Vn = Vn+1−Vn =
∣∣0.3euy,n

∣∣− ∣∣euy,n
∣∣

=−0.7
∣∣euy,n

∣∣≤ 0 .
(18)

It is obvious that the error system will converge to zero
according to the stable theory.

Fig. 4. Block diagram of the proposed secondary secure com-
munication scheme.

3.5. Design of the Secondary Chaotic Secure
Communication System

At the transmitter terminal, signal x(2) of Sys-
tem (5) is used to control the parameter µ1 of Sys-
tem (6), signal x(3) is the driving signal which is uti-
lized to drive the hyperchaotic System (6), and the re-
sulting signal yu1 will be used to modulate the trans-
mission signal mn, then the modulated signal is added
to f (xn(L)), finally, the encrypted signal will be trans-
mitted in the shape of G in the public channel. At the
receiver terminal, signal G will be used to synchronize
System (5) and System (7). After synchronizing, signal
s(2) of System (7) is used to control the parameter µ2
of System (8), signal s(3) is the driving signal which is
utilized to drive hyperchaotic System (8). Based on the
preceding analysis, the transmitter terminal and the re-
ceiver terminal will be synchronized, and the transmit-
ted signal will be recovered at the same time. Figure 4
depicts a block diagram of the proposed secondary se-
cure communication scheme.

4. Simulation Results

The transmitter terminal and the receiver terminal
are defined as systems (5), (6) and systems (7), (8). At
the transmitter terminal and the receiver terminal, we
choose the random initial conditions of the spatiotem-
poral chaotic systems as x0(i), i = 2,3, · · · ,L, and s0(i),
i = 2,3, · · · ,L, respectively, with the lattice length be-
ing L = 30, iteration times being n = 1000, and the
coupling parameter being ε = 0.5. The transmission
signal mn is also randomly generated. We define the
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Fig. 5. Error curves of the spatiotemporal chaotic systems.

lattice map as System (3), the initial conditions of the
hyperchaotic system at the transmitter terminal are de-
fined as yu1 = 0.5, zu1 = 0.5, and at the receiver termi-
nal, the initial conditions of the hyperchaotic system
are defined as yu2 = 0.8, zu2 = 0.2. Controllers at each
side are selected as

µ1 = 3.5+
|xn(2)|

2
, µ2 = 3.5+

|sn(2)|
2

.

The primary modulation function is defined as

r(mn) =
2mn−1

10
yu1,n ,

the secondary encryption modulation function is de-
fined as

G = r(mn)+ f (xn(L)) .

Fig. 6. Error curves of the hyperchaotic systems.

And the limited noise in the public channel is 0.01 ·
sin(t).

Select the error signals which are related to the com-
munication to observe; the error curves of the spa-
tiotemporal chaotic systems (5) and (7) are shown
in Figure 5. Error curves of the hyperchaotic discrete
systems (6) and (8) are shown in Figure 6.

Because it will take a certain period of time before
synchronization, we select a special encryption signal
which is defined between 600 times and 800 times as
desired signal to observe. The original signal mn, pri-
mary encryption signal Sig1, secondary encryption sig-
nal Sig2, and recovery signal Mn are shown in Figure 7.

We can draw the conclusion from Figure 6 that er-
rors en(2), en(3), and en(30) converge to zero after it-
erating about 30 times, 50 times, and 450 times, which
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Fig. 7. Signals during the communication.

indicates that the process of synchronization is gradual.
In the drive of spatiotemporal chaos signal, the hyper-
chaotic systems also reach synchronization after about
100 times.

From Figure 7, we can draw the conclusion that
the signal becomes very complex and can’t be dis-
tinguished from the original signal after the first en-
cryption, and the signal becomes more chaotic after
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Fig. 8. (a) Transmitted and (b) recovered image.

secondary encryption. At the receiver terminal, the
signal is completely recovered after decryption and
the decryption signal is presented in Figure 7d, which
shows the effectiveness of our secure communication
scheme.

At last, with the above method, we choose the binary
Lena image as the transmitted image, which consists
of 0 and 1. The transmitted image and the recoverd im-
age are shown in Figure 8. We can conclude that the
image is totally recovered at the receiver terminal and
the effectiveness of our robust secure communication
is visible.

5. Conclusions

In order to enhance the security of the digital signal
transmission, in this paper, utilizing the characteristic
properties of spatiotemporal chaos and hyperchaotic
system, we have proposed a new secondary chaotic se-
cure communication system. Under this structure, the
digital signal can be successfully and secretly deliv-
ered via the chaotic synchronization, chaotic modula-

tion, chaotic mask, signal transmitting and receiving.
By the use of chaotic modulation and chaotic mask in
high-dimension complex chaotic systems, namely spa-
tiotemporal chaos system and the hyperchaotic system,
we have greatly improved the security of digital signal
transmission. Additionally, the structure of our system
is simple and no extra controllers are needed, which
makes the design of the system flexible and revelatory.
Numerical simulations show the effectiveness and fea-
sibility of our method.
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