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In this paper, we construct a new substitution box (S-box) structure based on the elements of the
maximal cyclic subgroup of the multiplicative group of units in a finite Galois ring instead of Galois
field. We analyze the potency of the proposed S-box by using the majority logic criterion. Moreover,
we illustrate the utility of the projected S-box in watermarking.
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1. Introduction

For valuable application and a new role, maximal
cyclic subgroup of the group of units of a Galois ex-
tension ring attains a keen interest in algebraic cod-
ing theory. In this respect, initially Shankar [1] pre-
sented a construction technique of Bose—Chaudhuri—
Hocquenghem (BCH) codes over local commutative
rings with the help of maximal cyclic subgroup of the
group of units of a Galois extension of alocal com-
mutative ring Z . The construction of this maximal
cyclic subgroup is based on a mod-p reduction map
from commutative ring Zpk to Z, (see Shankar [1]).
However, the exponential sums over Galois rings and
an upper bound for the hybrid sum over the Galois ring
are obtained by using maximal cyclic subgroups of the
groups of units of these Galois ring one can see in a se-
ries of papers Cohen [2] and Shanbhag et al. [3]. Fur-
ther, Andrade and Palazzo [4] gave the construction of
BCH codes over the Galois rings by means of maxi-
mal cyclic subgroup. In this sequel, Shah etal. [5, 6]
present a sequence of BCH codes using the chain of
maximal cyclic subgroups of the chain of groups of
units in the chain of finite Galois rings and finite uni-
tary commutative rings.

In this correspondence, the proposed work presents
a construction technique of a substitution box (S-box)
using this maximal cyclic subgroup of the group of
units in Galois rings. The complexity of the problem is
to construct bijective Boolean functions over this maxi-
mal cyclic subgroup adjoining zero, with the extension
0—0.

In Section 2, the algebraic structure of the maxi-
mal cyclic subgroup is presented. Section 3 consists
of the algebraic expression of the proposed S-boxes
over maximal cyclic subgroups of groups of units of
Galois ring extensions GR(4,2) and GR(4,4) of Z4.
In Section 4, we examine the security of the projected
S-box with the majority logic criterion (MLC). Sec-
tion 5 presents the usefulness of the proposed substitu-
tion box in watermarking and Section 6 is about con-
clusions and future directions.

2. Construction of Maximal Cyclic Subgroup

We begin with some basic definitions of unitary
(local) commutative rings.

Definition 1 (Unit elements). Let R be a commutative
ring with unity. An element « is unit in R if there exists
an element v in R such that u-v = 1, where 1 is the
identity of R.

Definition 2 (Local ring). A commutative ring R with
unity is said to be local if and only if its all non-unit
elements form an additive Abelian group. For instance
Z,, p is a prime integer and k is any positive integer,
is a local ring.

Definition 3 (Zero divisors). Let R be a commutative
ring with unity. A non-zero element a is a zero divisor
in R if there exists a non-zero element b in R such that
a-b=0.
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Definition 4 (Basic irreducible polynomial). Let
(R,M) be alocal commutative ring with unity. An ir-
reducible polynomial f(x) € R[x] over R is said to be
a basic irreducible polynomial if it is irreducible over
the corresponding residue field K (= R/M).

Consider the finite local ring Z x, where p is prime
and k is a positive integer with corresponding residue
field Z,. Now Z [x] = {ao +arx +apx® + -+ apx" :
a;i € Zyx, n € Z} is the polynomial extension of Z
in the variable x and Z,[x] = {ao +a1x+ax* + - +
apx" : a; € Z,, n € Z"} is the polynomial exten-
sion of Z, in the variable x. Let f(x) €Z [x] be a ba-
sic irreducible polynomial with degree h. Ideal gen-
erated by f(x) is denoted as (f(x)) and defined as

Z ilx
(1) = {al) £ () ax) € 2} Let R = Hiy =
{ag+arx+ax*+---+ap_1x"': a € Z,} denote
the set of residue classes of polynomials in x over Z x,
modulo the polynomial f(x). This ring, denoted by
GR(p*, h), is a commutative ring with identity and is
called the Galois extension of Z . Also GR(p*, 1) is
ZpA]
(f(0)
morphic to GF(p"), a Galois field extension of Z, hav-

ing p" elements, where f = r,(f) polynomial f which
has coefficient modulo p.

Let K* and R* be the multiplicative group of units of
field and the ring K and R, respectively. Then R* is an
Abelian group and can be written in the direct prod-
uct of cyclic subgroups. By the following Theorem
from [1, Theorem 2], between these cyclic subgroups,
there is only one cyclic subgroup of order p” — 1.

isomorphic to Z, and GR(p,h) = = K is iso-

Theorem 1. R* has one and only one cyclic subgroup
of order relatively prime to p. This cyclic subgroup has
order p" — 1.

The cyclic subgroup of order p" — 1 can be gen-
erated by the generator of the corresponding finite
field. This cyclic subgroup is denoted by G,, where
n = p" — 1. Since the order of K* and G, is the same,
i.e., p" —1 and both will be cyclic. Therefore G, is
isomorphic to K*.

Example 1. The corresponding residue field of the
ring is Zp = {0, 1}. Let f(x) = x> 4+ 3x+ 1 be a monic
and basic irreducible polynomial over Z; and f(x) =
x*>+x+ 1 is an irreducible polynomial over Z;. Now
Zlx] ={ap+arx+ap®+---+ax":a; € Zp ,n€ Z+}
is the polynomial ring in one indeterminate x and ideal
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generated by f(x) is denoted and defined as (f(x)) =
{a(x)- f(x): a(x) € Zy[x]}. Similarly, Z4[x] = {ao +
aix+ax® 4+ +ax": a; € Zy, nE Z*} and ideal
generated by f(x) is denoted and defined as (f(x)) =
{a(x)- f(x): a(x) € Z4]x]}. Now, the Galois ring of
order 16 becomes R = 4% and the correspond-

(x2+3x+1)
ing Galois field of order 4 becomes K = <x22+2,[£1> . The

multiplicative group of units of K is K* = {1,u,u+ 1},
where i denotes the residue class containing {x}. The
elements of GF(2?) are given in Table 1.

Similarly, the multiplicative group of units of R is R*
and its cyclic subgroup is Gz = {1,3u,u + 3}, where
u is the residue class containing x. We can write it in
tabular form as in Table 2.

Example 2. Let Z; = {0,1,2,3} be a ring with residue
field Z, = {0, 1}. Let f(x) = x* +x+ 1 be a monic and
irreducible polynomial over Z; and f(x) = x* +x+1
is irreducible over Z,. Now Z[x] = {ao +ajx+ axx* +
co-4apx": a; €Zp, n€Z"} and ideal generated by
f(x) is denoted and defined as {f(x)) = {a(x) - f(x) :
a(x) € Zy[x]}. Similarly Zy[x] = {ag + a1x + ax* +
coodapx: a; €Zy, n€Z"} and ideal generated by
f(x) is denoted and defined as (f(x)) = {a(x)- f(x) :
a(x) € Zs|x]}. Now a Galois ring of order 256 be-

comes R = T Xﬁx’;w and its corresponding Galois field
of order 16 becomes K = <X4Zjﬁl>. The elements of

GF(2*) can be obtained in Table 3 using the identity
@*+ii+1 =0 and modulo 2.

The multiplicative group of units of K is K* =
K\{0}. Similarly a multiplicative group of units of R
is R* and its cyclic subgroup is Gys. Since the corre-

Table 1. Elements of Galois field of order 4.

Exp. |Polynomial Calculation
—oo 0 00

0 1 10

1 i 01

2 1+ 11 =147

Table 2. Elements of cyclic subgroup of order 3.

Exp. |Polynomial Calculation

—oo 0 00

0 1 10

2 3+4i 31 (> =3+u

4 3i 03 |u*=w? - u? =1+2u+u?
=14+2u+34+u=3u
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Table 3. Elements of Galois field of order 16. Table 4. Elements of cyclic subgroup of order 15.
Exp. |Polynomial Calculation Exp. |Polynomial Calculation
— |0 0000 “w |0 0000
0 1 1000 0 1 1000
1 1+ﬁ2 1100 , 2 14 2u+u? 1210 (1 +u)?> = ? +2u+1
2 |1+a 1010|(a+1)" =a+1 4 Butad 0320 [(1+u)* =u* +2u% + 1
3 [tva+@+a 1@+ =@+ 1)(a+1)y? =3u+3+2% + 1 =22+ 3u
:(_g+1_)2(ﬁ2_+1) 6 |2+utdd 2103 [(1+0)° = (1+u)>(1 +u)*
=i+ +ia+1 = (u? +2u+1)(2u® 4 3u)
4 i 0100 |(a+1)*= (a+1)*(a+1)2 =20t 303 +3u =33 +u+2
=@+ 1)@ +1)=a'+1 § 2 0010 |(1+u)® = (1 +u)* (1 +u)*
I —atlil=a = (2u® +3u) (26 + 3u) = u?
5 |ata 0110 | (@+1) = (a+ (@ +1) 10 3+3utu?+2 3B312[(1+uw)" =1 +u)?(1+u)
=(a+1)(a)=a"+i = (U +2u+1)(u?)
6 a+i 0101 [(@+1)° = (a+1)(a+1)° B SR S A
=(a+\)(@+a)=i+a 12 2+ 2u+3i 2203 [(1+u)% = (1 +u)* (1 +u)®
7 [t+@+@ 1011 [(@+1)7 = (@+1)(a+1)° = (22 +3u)(u?) = 3u +2u+2
=@+ )@+ =P +@+1 13 132+ 0131 [(T+ )™ = (14 u)5(1 + u)®
8 |7 0010 |(a+1)* = (a+ 1)*(a+1)* = (3P +u+2) (12) = 13+ 3P +u
=i =i 16 |3+3u 3300 [(1+u)® = (1+u)¥(1+u)d
9 P+ 0011 [(a+1)° = (a+1)(a+1)8 — w22 =3u+3
— (7 2 __ =3 =2
=@+)at=w+a 18 Btutu>+3u 3113 |(1+u)® = (1+u)5(1 +u)?
10 |[1+a+a? Hof@+ )0 =@+ 1> @a+1)» = Gu+3)u? +2u+1)
=@+ ) =i*+ia+1 =3 +u +u+3
1 i+a 1001 )@+ 1) = (@+ N+ DT 20 |utr3l+2d 0132 [(T+u)™ = (1+u) (1 +u)?
=@+1)@+a+1)=a+1 = (3u+3)(2u? +3u)
12 |@ 0001 [(a+ 1) = (a+ 1)*(@a+1)8 B3
=ai =i 22 [1+32+4 1031 [(1+u)?Z = (1 4+ u) (1 4 u)®
13 |14+a+a 1ot [(a+1)B =@+ 1)@+ 1) = (Bu+3)(3u® +u+2)
= (a+1)(@) =a* + @ =’ 43> +1
-3 -
=& titl 24 [3u?+34° 0033 [(1+u)™ = (1+u) S (1 +u)®
14 Ja+a®+a o111 [(@+ 1) = (a+1)*(a+ 17 = Gu+3)(?) = 3 + 3
:(ﬁ2+l)(ﬁ3):ﬁ3+ﬁ2+ﬁ 2% 318 3001 (1+u)26:(1+u)24(1+u)2
= (3ud +3u?) (> +2u+1)
=ud+3
28 [143u+2u+u® 13211+ u)® = (14 u)®(1+u)?
sponding element of i+ 1 is #+ 1 and the order of that = (Lf + 3)2 (u® +2u+1)
element u + 1 is 30 so the generator of the cyclic group =u +2uw +3u+tl

Gis is (u+1)?, where i is the residue class containing

i in K and u is the corresponding residue class con-  Step 1: Define an inversion function / from G, U{0}

taining u in R. The elements of the cyclic subgroup of to G, U{0}.

order 15 are shown in Table 4. Step 2: Define a linear scalar multiple function f
from G, U {0} to G, U{0}.

Step 3: Take the composition of I and f and get a n X

3. Construction of the Substitution Box over G,
n S-box.

_ . Some examples are given below.
The substitution box is the only component of many p &

block ciphers which is capable to create confusion in Example 3. Now take I : G3 U {0} — G3 U {0} such
the data that is why many researchers have paid atten- ¢

tion to improve the quality of the S-box. In this paper,

we construct a new S-box structure based on G,,. To the ulif u#0,

best of the authors knowledge, this is the first time to (u) = 0if u=0,

construct a bijective S-box on a cyclic group instead of

Galois field. The procedure is explained below: and f: G3U{0} — G3U{0} such that
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Table 5.
Exp. Polynomial
— 0 00
4 3u 03
2 34+u 31
0 1 10
) au if u#0,
u)=
0if u=0,

where a = 3u = (03) then Table 5is /o f.
Now for the S-box the decimal form of the above

table is
0[3]14]4]

Finally, the S-box will be

0 1 2 3
1 0000 0011 1101 0100

Example 4. Now take I : G;5U{0} — G;5U{0} such
that

71.
1) = u. if u#0,
0if u=0,

and f : G;s U{0} — G;5U{0} such that

_ Jau if u#0,
f(”)_{o if u=0,

where a = (u+1)? = (1210) then Table 6 is o f.

Table 6.

Exp. Polynomial

) 0000
2 1+42u+u? 1210
0 1 1000
28 1+43u+2u*+ud 1321
26 3+’ 3001
24 3u®+3u3 0033
22 14 3u*+u? 1031
20 u+3u? 423 0132
18 3+u+u?+3i4° 3113
16 3+3u 3300
14 u+3u®+u? 0131
12 242u+3u3 2203
10 3+3u+u®+2u° 3312
8  u? 0010
6 2+u+3u’ 2103
4 Bu+2u? 0320

Now for the S-box, Table 6 becomes (under mod
256)

0 193 215 246
100 15 240 4
64 77 29 147
121 30 163 56

and its S-box will be (under mod 2)

0 1 2 3
0 00000000 11000001 11010111 11110110
1 01100100 00001111 11110000 00000100
2 01000000 01001101 00011101 10010011
3 01111001 00011110 10100011 00111000

4. Majority Logic Criterion for the Analysis of
Substitution Boxes

In [7], Hussain et al. have given a majority logic cri-
terion to analyze the statistical strength of an S-box in
image encryption application. This criterion is used to
analyze the statistical strength of the S-box in image
encryption application. The encryption process pro-
duces distortions in the image, and the type of these
distortions determines the strength of the algorithm.

The results of MLC, arranged in Table 7, show that
the proposed S-box satisfies all the criteria up to the
standard and can be used for secure communication.

5. Application of Proposed Substitution Box in
Watermarking

One possible application of the proposed S-box is
that it can be used in watermarking of an image. One
of the prime aspects of watermarking is that it does not
affect the quality of the image. So keeping that point in
mind, the S-box transformation has been applied to the
least significant bits (LSBs) of each pixel of an image
which will not alter the class of the image. The proce-
dure is explained in Figure 1.

Table 7. Entropy, Contrast, Correlation, Energy, Homogene-
ity and MAD analysis of proposed sheme.

S-Box Proposed
Entropy 4.73018

Contrast 3.322085
Correlation 0.087904
Energy 0.024477
Homogeneity 0.483523
MAD 36.3631
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Transform into Image File

Convert each value of
pixel into binary form [~

Watermarking

v

Pick 4 LSBs of each value according to GR (p
h) S-box

!

S-box Transformation on LSBs of each pixel,If
the Substituted element is greater than 16
then we will save the most significant bit for
the detection of watermark

>

Transform
modified matrix
into image file

Matrix

-

—

Show Image » End

Fig. 1 (colour online). Proposed scheme.

(a) (b)

N ;/
3&1

Fig. 2. Grey scale image (two-dimensional matrix of picture
elements (pixels) having intensities between 0 and 255) com-
parison of (a) original image and (b) watermarked image,
having a watermark in the four least significant bits (LSBs) of
each pixel of the original image by the transformation of the
two-dimensional S-Box having four rows and four columns.

o 100 200 100

Fig. 3 (colour online). Histogram of Figure 1.

The simulation results are achieved using MATLAB
software. The watermarking has been applied to the
grey scale, and the comparison of their histograms is
analyzed.

In Figure 3, the histograms show the distribution of
the intensities of picture elements. We can see that
there is not much difference between the two his-
tograms due to the fact that the transformation is ap-
plied only to the four LSBs of the original image, so
the maximum alteration of a pixel is to the extent of
fifteen intensity values. This effect is visualized in Fig-
ure 2: the watermark does not affect much the quality
of the original image because the human eye can dif-
ferentiate only forty grey scale levels, so the change of
six or less than six grey scale levels cannot be distin-
guished by the human eye.

‘Watermarking Grey Scale
Analysis Image
MSE 11.7755
PSNR 86.1651
SSIM 0.9145

6. Conclusion

Some important findings of the proposed work:

(i) In the construction of the S-box, we used the
maximal cyclic subgroup of the group of units in a Ga-
lois ring instead of a Galois field, and we used a mod p-
reduction map to construct maximal cyclic subgroup.

(i1) Since we used a maximal cyclic subgroup un-
der multiplication, so the operation of addition in this
construction is removed as in the case of a field.

(iii) In the proposed work, we constructed a 4 x 4
S-box instead of a 8 x 8 S-box.

(iv) The mapping of the proposed S-box is one-one
from G, U {0} to GF(2®), but in the S-box construc-
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tion over a Galois field, the mapping is bijective from
GF(2%) to GF(2%).

(v) The proposed S-box satisfies the MLC with opti-
mal values and gives a good worth as compared to the
other ones.
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