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This paper examines radiative thermal regime in dissipative magnetohydrodynamic (MHD) Cou-
ette flow in a composite parallel plate channel partially filled with a radiating fluid saturated porous
medium and partially filled with a radiating clear fluid. The fluid is considered to be viscous, in-
compressible, optically dense, electrically conducting, and Newtonian. The radiative heat flux in the
energy equation is assumed to follow the Rosseland approximation. Suitable matching conditions
are used to match the momentum and thermal regimes in clear fluid and porous regions at the clear
fluid–porous interface. The momentum and energy equations have closed form solutions. The effects
of various parameters on the system are analyzed through graphs and tables.

Key words: Radiation; MHD Couette Flow; Composite Channel; Newtonian; Dissipation.

1. Introduction

Couette flow in parallel plate channel and associ-
ated heat transfer studies serve as good baby models in
garnering pertinent ‘core’ first-hand information about
many geophysical and industrial phenomenon. Though
Couette flow is a classical problem in fluid mechan-
ics but certainly, pressing needs of applications and the
simple geometry have attracted investigators to revisit
the problem with a variety of assumptions including
Bhargava and Sancheti [1], Chauhan and Vyas [2], and
many others. The Couette flow in parallel plate chan-
nels filled with a porous medium has also been studied
by [3 – 7].

However, it has been experienced that though the
porous medium enhances heat transfer but increases
pressure drop too. To overcome this bottleneck, in-
vestigations were carried out in composite channels
(Vafai and Kim [8], Huang and Vafai [9, 10]). Re-
cently several works have been reported on the effi-
cacy of porous substrate in heat transfer augmentation
(Kaviany [11, 12], Nield and Kuznetsov [13], Hooman
et al. [14], Baoku et al. [15]). The findings revealed that
the channels partially filled with a porous medium can
still be reasonably effective in heat transfer augmenta-
tion. The heat transfer studies in composite ducts were
motivated by two major issues: firstly, the urging need

to address the problem of heat transfer enhancement
under the given constraints; secondly, there are areas
such as geothermal engineering, industrial engineering
etc. where one comes across the fluid–porous inter-
face. The analysis of flow and thermal characteristics
at the fluid–porous interface is of immense significance
in numerous processes such as pollutant dispersion in
aquifers, environment transport processes, separation
processes in chemical industry, flow past porous scaf-
folds in bioreactors, drying process, ceramic process-
ing etc.

Thus, prompted by the numerous applications cut-
ting across different realms, investigations of flow and
heat transfer in composite channels have been reported
(Sahraoui and Kaviany [16], Kuznetsov [17 – 19],
Alkam et al. [20], Al-Nimr and Khadrawi [21],
Chauhan and Rastogi [22, 23], Komurgoz et al. [24],
Chauhan and Agrawal [25, 26], Kaurangini and
Jha [27]). It is pertinent to mention that the compos-
ite channel studies have grown considerably due to
much headway in proper conditions matching the ve-
locity and/or temperature of the clear fluid region and
that of the porous region at the interface (Beavers and
Joseph [28], Neale and Nader [29], Kim and Rus-
sell [30], Vafai and Thiyagaraja [31]). Here, we are in-
clined to clarify that the issue of boundary conditions
at the clear fluid–porous interface is still open. Some
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authors are reluctant to appreciate the idea of continu-
ity of shear stress across the clear fluid–porous inter-
face and advocate the continuity of velocity only across
the clear fluid–porous interface but not that of shear
stress (Ochoa-Tapia and Whitakar [32, 33], who ob-
served a jump in the shear stress at the interface). Here
it should be noted that given to complex structures
of porous materials these conditions were derived un-
der certain assumptions. Hence, there is still a general
understanding that different porous media have dis-
tinct structure characteristics and therefore may war-
rant interface conditions accordingly. In this regard,
fabulous survey and analysis pertaining to the differ-
ent matching conditions at the clear fluid–porous inter-
face (Alazmi and Vafai [34]) is worth to take note of,
who examined the effects of various conditions at the
interface on the velocity and temperature fields. They
found substantial results that though the velocity field
was sensitive to the different matching conditions at
the fluid–porous interface but there was no substantial
quantitative difference in the temperature field for dif-
ferent matching conditions. They concluded that there
were at the most 2% variations in the thermal quan-
tities of interest for different interfacial conditions. In
view of the above discussion, in order to analyze radia-
tive thermal regime in composite channel, we felt free
to follow the conditions suggested by Kim and Rus-
sell [30] that indicate continuity in velocity and shear
as well besides continuity in temperature and tempera-
ture gradient across the interface.

Fig. 2 (colour online). Velocity distribution for variation in A when M = 1, K0 = 0.1, C1 = 5, ϕ1 = 0.8, and U0 = 5.

–a

Fig. 1. Schematic Diagram.

Thermal studies with dissipation aspects are signif-
icant in devising optimal systems. It is pertinent to
record that dissipation is observed to be quantitatively
inferior as compared to its other counterpart effects
but certainly has appreciable qualitative effects. One
may recall that viscous dissipation physically means
the local production of thermal energy due to viscous
stresses. The effect is encountered in both the vis-
cous flow of clear fluids and the fluid flow through
the porous medium. A great deal of discussion on the
expressions envisaging dissipation in porous media is
available in the literature. The dissipation ϕ in porous
region is assumed to take the following form (A. K. Al-
Hadhrami et al. [35]):

ϕ = µ̄

(
du
dy

)2

+
µ

k
u2 .
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Radiative heat transfer studies are important in the
thermal regimes involving high temperatures. Though,
radiative studies are complex and cumbersome due to
the intricacies involved, but thankfully, some reason-
able simplifications have been found to work satis-
factorily. Many authors have conducted radiative heat
transfer studies in flow configuration with and with-
out a porous medium (Plumb et al. [36], Vyas and Sri-
vastava [37 – 39], Vyas and Ranjan [40], Vyas and
Rai [41, 42], Pop et al. [43], Hayat et al. [44]).

To the best of the knowledge to the authors’, radi-
ation effects in composite duct flow have not been re-
ported. This motivated us to carry out the presented
work. It is expected that the model presented here
would serve as a pertinent introductory analysis for fur-
ther explorations.

2. Mathematical Model and Solution

Let us consider the magnetohydrodynamic (MHD)
radiative flow of a viscous electrically conducting in-
compressible fluid between two horizontal walls at
a distance h apart (Fig. 1). The upper wall is rigid and
moving with a uniform velocity u0 whilst the lower
wall is a stationary porous bed of finite thickness a with
an impermeable bottom. A Cartesian coordinate sys-
tem is used where Oxyz constitutes a set of orthogonal
axes with origin at the interface. The walls are paral-
lel to the x,z-plane. The channel is very long and is of
large width in the z-direction.

The flow regime is divided into two zones: I – the
clear fluid region (0 ≤ y ≤ h), II – the porous re-
gion (−a ≤ y ≤ 0). The flow is caused by applying
a constant pressure gradient ∂ p/∂x at the mouth of
the channel and due to the movement of the upper
wall. The upper wall and the bottom of the porous bed
bear constant temperature Tw1 and Tw2 , respectively
(Tw1 > Tw2 ). A uniform magnetic field of strength B0
is applied parallel to the y-axis. The induced mag-
netic field is neglected, which is valid for small mag-
netic Reynolds number. The radiative flux in the energy
equation is described by the Roseland approximation
which simulates radiation in optically thick fluids rea-
sonably well wherein thermal radiation travels a short
distance before being scattered or absorbed.

The following assumptions are also made in the in-
vestigations:

i. The flow is steady, laminar, and fully developed.

ii. The fluid is absorbing–emitting radiations but it is
non-scattering.

iii. The plates are perfect insulators.
iv. The fluid is assumed to be Newtonian and without

phase change.
v. The fluid and the porous medium are in local ther-

mal equilibrium.

Under these conditions, considering the Brinkman
model for the porous medium, the governing equations
for the setup under consideration are

Region I (0≤ y≤ h):

µ
d2u1

dy2 −σB2
0u1 =

∂ p
∂x

, (1)

κ
d2T1

dy2 + µ

(
du1

dy

)2

− ∂qr

∂y
= 0 . (2)

Region II (−a≤ y≤ 0):

µ̄
d2u2

dy2 −σB2
0u2−

µ

k0
u2 =

∂ p
∂x

, (3)

κ̄
d2T2

dy2 + µ̄

(
du2

dy

)2

+
µ

k0
u2

2−
∂qr

∂y
= 0 . (4)

Here the subscripts 1 and 2 denote the quantities for
Region I and Region II respectively.

The quantities u, p, κ , µ , υ , T , qr, k0, and σ de-
note the fluid velocity, pressure, thermal conductivity,
coefficient of viscosity, kinematic viscosity, temper-
ature, radiative heat flux, permeability, and electrical
conductivity, respectively. The quantities µ̄ and κ̄ are
effective viscosity and effective thermal conductivity,
respectively, of the porous medium.

The boundary and interface conditions on velocity
and temperature are

y = h : u1 = u0 , T = Tw1 ,

y = 0 : u1 = u2 ,

(
µ

du1

dy

)
=
(

µ̄
du2

dy

)
,

and T1 = T2 ,

(
κ

dT1

dy

)
=
(

κ̄
dT2

dy

)
,

y =−a : u2 = 0 , T = Tw2 .

(5)

We assume that ∂ p/∂x =−C (constant).
The radiation heat flux qr in the energy equation

is assumed to follow the Rosseland approximation
(Brewster [45], Modest [46]) and is given as
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qr =−4σ∗

3k∗
∂T 4

∂y
, (6)

where σ∗ and k∗ are the Stephan–Boltzmann constant
and mean absorption constant, respectively. We as-
sume that the temperature difference within the fluid
is sufficiently small so that T 4 may be expressed as
a linear function of the temperature T . This is done by
expanding T 4 in a Taylor series about Tw2 and omitting
higher-order terms to yield

T 4 ∼= 4T 3
w2

T −3T 4
w2

. (7)

3. Method of Solution

We now introduce the following non-dimensional
quantities:

X =
x
h

, Y =
y
h

, U =
uh
υ

, P =
ph2

ρυ2 ,

A =
a
h

, K0 =
k0

h2 , θ =
T −Tw2

Tw1 −Tw2

.

(8)

In view of (8), the governing equations (1) through (4)
take the following non-dimensional forms:

Region I (0≤ Y ≤ 1):

d2U1

dY 2 −M2U1 =−C1 , (9)

d2θ1

dY 2 =
−Br

(1+4Nr/3)

(
dU1

dY

)2

. (10)

Region II (−A≤ Y ≤ 0):

d2U2

dY 2 −N2U2 =−C1

ϕ1
, (11)

d2θ2

dY 2 =
−Br

ϕ2(1+4Nr/3ϕ2)

[
ϕ1

(
dU2

dY

)2

+
U2

2

K0

]
. (12)

And the boundary conditions (5) in non-dimensional
form are reduced to

Y = 1 : U1 = U0 , θ1 = 1 ,

Y = 0 : U1 = U2 ,
dU1

dY
= ϕ1

dU2

dY
,

θ1 = θ2,
dθ1

dY
= ϕ2

dθ2

dY
,

Y =−A : U2 = 0 , θ2 = 0 ,

(13)

where M =

√
h2σB2

0
µ

, Nr =
4σ∗T 3

w2
k∗κ

, and Br =
µυ2

κh2(Tw1−Tw2 ) are Hartmann parameter, radiation param-

eter, and Brinkman number, respectively. Also U0 =
u0h
υ

, ∂P
∂X = −C1, N2 = 1

ϕ1

(
M2 + 1

K0

)
, ϕ1 = µ̄

µ
, and

ϕ2 = κ̄

κ
.

The equations for velocity and temperature fields
for both the regions given in (9) through (12) are linear
ordinary differential equations hence are amenable
to closed form analytical solutions. Solving (9)
through (12), we get the solutions as

Region I (0≤ Y ≤ 1):

U1 = A1 eMY +B1 e−MY +
C1

M2 , (14)

θ1 =− Br
4(1+4Nr/3)

(
A2

1 e2MY +B2
1 e−2MY

−4A1B1M2Y 2)+D1Y +D2 .

(15)

Region II (−A≤ y≤ 0):

U2 = A2 eNY +B2 e−NY +
C1

ϕ1N2 , (16)

θ2 = D3Y +D4−
Br

ϕ2(1+4Nr/3ϕ2)

[
ϕ1

(
1+

1
ϕ1K0N2

)
·
(

A2
2

4
e2NY +

B2
2

4
e−2NY

)
+

C2
1Y 2

2ϕ2
1 K0N4

+
2C1

ϕ1K0N4

·
(
A2 eNY +B2 e−NY )−A2B2N2

(
ϕ1−

1
K0N2

)
Y 2
]
,

(17)

where A1, B1, D1, D2, A2, B2, D3, and D4 are constants
of integration to be evaluated in view of (13). We apply
the boundary conditions given by (13) to (14) and (16)
and obtain the simultaneous equations in A1, A2, B1,
B2 as

A1 eM +B1 e−M = U0−
C1

M2 , (18)

A1−A2 +B1−B2 = C1

(
1

ϕ1N2 −
1

M2

)
, (19)

MA1−ϕ1NA2−MB1 +ϕ1NB2 = 0 , (20)

A2 e−AN +B2 eAN =− C1

ϕ1N2 . (21)

We now apply boundary conditions given by (13)
to (15) and (17) to get the simultaneous equations in
D1, D2, D3, D4 as
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Fig. 3 (colour online). Temperature distribution for varying values of K0 when M = 1, A = 0.5, C1 = 5, U0 = 5, Br = 0.5,
Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6.

Fig. 4 (colour online). Temperature distribution for varying thickness A of the porous layer when M = 1, K0 = 0.1, C1 = 5,
U0 = 5, Br = 0.5, Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6.

D1 +D2 = 1+
Br

4(1+4Nr/3)

(
A2

1 e2M +B2
1 e−2M

−4M2A1B1

)
,

(22)

D2−D4 =
−Br

ϕ2(1+4Nr/3ϕ2)

[
2C1(A2+B2)

ϕ1K0N4 +
ϕ1

4
(23)

·
(

1+
1

ϕ1K0N2

)(
A2

2+B2
2

)]
+

Br
(
A2

1 +B2
1

)
4(1+4Nr/3)

,

D1−ϕ2D3 =
−Br

(1+4Nr/3ϕ2)

[
Nϕ1

2

(
1+

1
ϕ1K0N2

)
(

A2
2−B2

2

)
+

2C1N(A2−B2)
ϕ1K0N4

]
+

MBr
(
A2

1−B2
1

)
2(1+4Nr/3)

, (24)
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(a)

(b)

Fig. 5 (colour online). (a) Temperature distribution for variation in M (M < 1) when K0 = 0.1, A = 0.5, C1 = 5, U0 = 5,
Br = 0.5, Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6. (b) Temperature distribution for variation in M (M ≥ 1), when K0 = 0.1, A = 0.5,
C1 = 5, U0 = 5, Br = 0.5, Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6.

AD3−D4 =
−Br

ϕ2(1+4Nr/3ϕ2)

[
ϕ1

4

(
1+

1
ϕ1K0N2

)
(

A2
2 e−2AN +B2

2 e2AN
)

+
2C1

(
A2 e−AN +B2 eAN

)
ϕ1K0N4 (25)

+
C2

1A2

2ϕ2
1 K0N4

−A2B2A2N2
(

ϕ1−
1

K0N2

)]
.

The system of linear equations (18) through (21)
and (22) through (25) for the unknowns A1, A2, B1,
B2, D1, D2, D3, and D4 have been solved by MATLAB
using the module LINSOLVE. Thus the complete so-
lution of (14) through (17) is obtained numerically.

In order to get an insight of the phenomena under
study, we have drawn the profiles for velocity and tem-
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Fig. 6 (colour online). Temperature distribution for varying values of Br when M = 1, K0 = 0.1, C1 = 5, U0 = 5, A = 0.5,
Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6.

Fig. 7 (colour online). Temperature distribution for varying values of Nr when M = 1, K0 = 0.1, C1 = 5, U0 = 5, A = 0.5,
Br = 0.5, ϕ1 = 0.8, and ϕ2 = 0.6.

perature distributions and rates of heat transfer at the
upper wall and at the bottom of the porous bed. The
critical Brinkman number CBr at the upper wall is also
computed and is shown in a tabular form.

4. Results and Discussions

In order to peep into the phenomenon, the profiles for
velocity distribution, temperature distribution, and rates
of heat transfer at the walls have been drawn and are

discussed here. It is to be noted that in the velocity and
temperature profiles, the dotted lines (−0.5≤Y ≤ 0) in-
dicate the porous region and the solid lines (0≤Y ≤ 1)
indicate the clear fluid region. Figure 2 exhibits the ef-
fect of thickness A of the porous layer on the veloc-
ity distribution. The figure reveals that the velocity in-
creases with an increase in A. This finding is significant
in designing of engineering devices where higher ve-
locity can be obtained with the insertion of a porous
layer.
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Table 1. Variation of CBr with respect to U0 and M when
K0 = 0.1, C1 = 5, A = 0.5, Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6.

U0 = 1 U0 = 5
M CBr M CBr

0.1 0.57090 0.1 0.14504
0.6 0.70540 0.6 0.14649
1.0 1.02080 1.0 0.13802
2.0 3.65600 2.0 0.07990
2.6 3.91470 2.6 0.05582
3.0 2.8751 3.0 0.04562
4.0 1.34880 4.0 0.03090

Table 2. Variation of CBr with respect to U0 and K0 when
C1 = 5, A = 0.5, Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6; for the
cases when Hartmann number M = 0.5, 1.0, and 2.0.

U0 = 1 U0 = 5
M K0 CBr M K0 CBr

0.1 0.66050 0.1 0.14663
0.5 0.5 0.55061 0.5 0.5 0.21535

1.0 0.50500 1.0 0.91200
0.1 1.02080 0.1 0.13802

1.0 0.5 0.94900 1.0 0.5 0.19144
1.0 0.91200 1.0 0.20519
0.1 3.6560 0.1 0.07990

2.0 0.5 5.4140 2.0 0.5 0.08688
1.0 5.8990 1.0 0.08823

Figure 3 displays the variation in temperature θ for
varying values of permeability parameter K0. It is re-
vealed that the temperature decays with increasing val-
ues of the permeability parameter. The porous layer
offers low impedance to the fluid traversal inside for
higher values of K0. This indicates a rather shorter
cooling time by having larger values of K0.

Figure 4 displays the variation in temperature θ for
varying values of thickness A of the porous layer. The
figure reveals that there is a substantial increase in tem-
perature for increasing values of A. This finding is of
immense importance in devices having porous strips
and underlines the utility of a porous medium in heat
transfer augmentation.

The effect of Hartmann number (magnetic field pa-
rameter) M on the temperature field has been shown in
Figures 5a and b. The effect of the Hartmann number
has been analyzed for the two cases M < 1 (Fig. 5a)
and M ≥ 1 (Fig. 5b). Figure 5a reveals that the tem-
perature decreases uniformly in the whole region with
an increase in the values of M (< 1). Figure 5b dis-
plays the case when the values of M are higher than 1.
In this case the effect of M is somewhat abnormal. As
it is evident from the very figure, we find that in the

Table 3. Variation in CBr with respect to U0, A, and Nr when
M = 1, K0 = 0.1, C1 = 5, ϕ1 = 0.8, and ϕ2 = 0.6.

U0 = 1 U0 = 5
A Nr CBr A Nr CBr

0.1 1.0 3.08540 0.1 1.0 0.20624
0.3 1.0 1.63000 0.3 1.0 0.17623
0.5 1.0 1.02080 0.5 1.0 0.13802
0.5 2.0 1.64500 0.5 2.0 0.21960
0.5 3.0 2.26900 0.5 3.0 0.30110
0.5 4.0 2.89180 0.5 4.0 0.38248

upper region adjacent to the upper wall, the tempera-
ture rises consistently with the increasing values of M
and has a parabolic distribution. However, in the lower
middle clear-fluid region, the temperature distribution
is somewhat peculiar for M = 1 and M = 2. In con-
trast to this, the temperature in the porous region and
its vicinity decays consistently with increasing values
of M.

Figure 6 depicts the variation in temperature for
varying values of Brinkman number Br. The figure re-
veals that the temperature θ registers increment with
the increasing values of Br in both clear fluid and
porous regions. In fact, we note that for a given value
of the temperature difference Tw1 −Tw2 > 0 heat flows
from the upper plate to the fluid as long as Br does not
exceed a certain value, after that the maximum temper-
ature shifts from the upper wall region to mid plane and
heat flows from the fluid to the upper wall. Larger val-
ues of the Brinkman number are indicative of rather
more frictional heating in the system thereby caus-
ing a rise in the temperature. In fact, frictional heating
serves as energy source to modify the thermal regime.

Figure 7 displays the variation in temperature θ for
varying values of the radiation parameter Nr. The ef-
fect of higher values of Nr is to decrease θ .

The rates of heat transfer at the plates for different
values of the parameters involved have been displayed
in Figures 8 – 11. It is to be noted that in these figures
the rate of heat transfer is calculated at the imperme-
able bottom of the stationary porous bed (indicated by
dotted lines) and at the moving upper wall (indicated
the solid lines).

Figure 8 displays rates of heat transfer at the upper
wall and at the impermeable bottom for varying values
of the permeability parameter. From the very figure we
conclude that the temperature gradient dθ/dY at the
upper plate reduces numerically while it increases at
the bottom of the porous layer with increasing values
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Fig. 8 (colour online). Rates of heat transfer versus Br for varying values of K0 when M = 1, C1 = 5, U0 = 5, A = 0.5, Nr = 1,
ϕ1 = 0.8, and ϕ2 = 0.6.

Fig. 9 (colour online). Rates of heat transfer versus Br for varying thickness A of the porous region when M = 1, K0 = 0.1,
C1 = 5, U0 = 5, Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6.

of Br. This figure also reveals that with the increasing
values of the permeability parameter K0, dθ/dY at the
upper plate increases whereas it decreases at the bot-
tom of the porous bed.

Figure 9 demonstrates the effect of the thickness of
the porous layer A on the rate of heat transfer. The fig-
ure reveals that with the increasing values of A, the
temperature gradient dθ/dY at the upper plate de-

creases numerically and the same phenomenon is ob-
served at the bottom of the porous layer.

Figure 10a and b display the effect of the mag-
netic field parameter M on the rates of heat trans-
fer for the cases when M < 1 and M ≥ 1, respec-
tively. Figure 10a shows that the temperature gradi-
ent dθ/dY at the bottom of the porous layer in-
creases considerably with the increasing values of M
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(a)

(b)

Fig. 10 (colour online). (a) Rates of heat transfer versus Br for varying M when M < 1 and K0 = 0.1, C1 = 5, U0 = 5, A = 0.5,
Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6. (b) Rates of heat transfer versus Br for varying M when M ≥ 1, K0 = 0.1, C1 = 5, U0 = 5,
A = 0.5, Nr = 1, ϕ1 = 0.8, and ϕ2 = 0.6.

(when M < 1) whereas the effect of variable values
of M has insignificant impact on dθ/dY at the up-
per moving plate. In contrast to this, the impact of
Hartmann number M is drastically changed for the

representative values of M ≥ 1 as is evident in Fig-
ure 10b. This figure shows that with an increase in
M there is a considerable decrement in dθ/dY at the
moving upper wall whereas dθ/dY at the bottom of
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Fig. 11 (colour online). Rates of heat transfer versus Br for varying Nr when M = 1, K0 = 0.1, C1 = 5, U0 = 5, A = 0.5, Nr = 1,
ϕ1 = 0.8, and ϕ2 = 0.6.

the porous layer decreases very moderately with the
increasing values of M.

Figure 11 depicts the effect of the radiation parameter
Nr on the rate of heat transfer. The figure reveals that
dθ/dY at the upper plate increases considerably with
the increasing values of Nr whereas it decreases at the
bottom of the porous layer with increasing values of Nr.

The critical Brinkman number CBr is that value of
the Brinkman number Br at which the rate of heat
transfer changes its direction. As the upper wall is at
a higher temperature, hence CBr has been calculated
for the upper wall. The variation of CBr at the upper
wall with other parameters is shown in Tables 1, 2,
and 3.

It is clearly visible from Table 1 that CBr increases
with increasing values of Hartmann number M up to
a certain value of M say m. As M further increases (be-
yond m), CBr decreases. When the velocity of the upper
moving wall U0 is low, i. e. U0 = 1, then m ∼= 2.6. But
as we increase the velocity of the upper moving wall,
i. e. when U0 = 5, then m∼= 0.6.

As shown below, Table 2 clearly depicts that the crit-
ical Brinkman number CBr increases with increasing
values of the permeability parameter K0 except for the
case when the velocity of the upper moving wall U0 is
low and Hartmann number M ≤ 1. When U0 = 1 and
M ≤ 1, a reverse phenomenon is observed, i. e. CBr de-
creases with increasing values of K0. The variation of
CBr with the velocity of the upper moving wall U0, the
width of the porous layer A, and the radiation param-

eter Nr is shown in Table 3. It is clearly visible from
it that keeping the other parameters constant, CBr de-
creases on increasing A and decreasing Nr. The same
phenomena occurs at U0 = 1 as well as U0 = 5.

5. Conclusions

The dissipative MHD Couette flow in a composite
parallel plate channel partially filled with a radiating
clear fluid and partially with a fluid saturated porous
medium is considered. The radiative heat flux in the
energy equation is assumed to follow the Rosseland
approximation. The momentum and thermal energy
equations have closed form solutions. They are solved
using MATLAB and the solutions are obtained nu-
merically. These solutions are analyzed in the form of
graphs (Figs. 2 – 11) and tables (Tabs. 1 – 3). These re-
sults can be summarized as:

(I) On increasing the thickness of the porous layer,
1. the velocity and the temperature of the fluid in-

creases in both regions under consideration,
2. the rates of heat transfer at the upper moving wall

as well as at the bottom of the porous bed decreases,
and

3. the critical Brinkman number at the upper wall de-
creases.
(II) As the permeability parameter increases,

1. the temperature (in both regions) decreases,
2. the rates of heat transfer at the upper wall and at the

impermeable bottom decreases,
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3. the critical Brinkman number at the upper plate
increases except for the case when the velocity of
the upper moving wall is low and the Hartmann
number is ≤ 1; a reverse phenomenon is observed
here, i. e. the critical Brinkman number decreases
with increasing values of the permeability param-
eter.
(III) The effect of the Hartmann number on the ther-

mal regime is somewhat peculiar for the two cases:
a) For low values of Hartmann number (M ≤ 1), on in-
creasing M
1. the temperature of the fluid decreases in both re-

gions.
2. the rate of heat transfer increases considerably at the

bottom of the porous layer while moderate impact
is observed on the rate of heat transfer at the upper
moving wall.

b) For high values of Hartmann number (M ≥ 1), on
increasing M
1. the temperature of the fluid in the porous region
2. and its vicinity decreases while in the clear fluid re-

gion the temperature increases considerably and has
a parabolic distribution.

3. with increase in Hartmann number M there is a con-
siderable decrement in dθ/dY at the moving upper
wall whereas dθ/dY at the bottom of the porous
layer decreases very moderately with the increasing
values of M.

4. the critical Brinkman number at the upper wall in-
creases till the Hartmann number M increases to
a critical value m and decreases thereafter even on
increasing M. The value of m decreases with an in-
crease in the velocity of the upper moving plate.
(IV) On increasing Brinkman number,

1. the temperature of the fluid in both regions in-
creases,

2. the rateofheat transferat theupperwalldecreasesand
the rate of heat transfer at the lower wall increases.
(V) When the radiation parameter increases,

1. the temperature of the fluid in both regions de-
creases,

2. the rate of heat transfer at the upper wall increases,
the rate of heat transfer at the lower porous bed de-
creases,

3. and the critical Brinkman number at the upper wall
increases.
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