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In this paper, an analytical solution for the coupled one-dimensional time fractional nonlinear shal-
low water system is obtained by using the homotopy perturbation method (HPM). The shallow water
equations are a system of partial differential equations governing fluid flow in the oceans (some-
times), coastal regions (usually), estuaries (almost always), rivers and channels (almost always). The
general characteristic of shallow water flows is that the vertical dimension is much smaller than the
typical horizontal scale. This method gives an analytical solution in the form of a convergent series
with easily computable components, requiring no linearization or small perturbation. A very satisfac-
tory approximate solution of the system with accuracy of the order 10−4 is obtained by truncating the
HPM solution series at level six.

Key words: Nonlinear Shallow Water System; Approximate Analytical Solution; Homotopy
Perturbation Method; Caputo Derivatives.

1. Introduction

In the past few decades, fractional differential equa-
tions and partial differential equations have been the
centre of many studies due to their frequent appli-
cations in fluid mechanics, viscoelasticity, biology,
physics, electrical network, control theory of dynam-
ical systems, optics, and signal processing, as these
can be modelled by linear and nonlinear fractional or-
der differential equations as proposed by Oldham and
Spanier [1]. Some fundamental results related to solv-
ing fractional differential equations may be found in
Miller and Ross [2], Podlubny [3], Kilbas et al. [4],
Diethelm and Ford [5], and Diethelm [6].

The shallow water equations (SWEs) are a system
of partial differential equations governing fluid flow in
the oceans, coastal regions, estuaries, rivers and chan-
nels. The general characteristic of shallow water flows
is that the vertical dimension is much smaller than the
typical horizontal scale. In this case, we can average
over the depth to get rid of the vertical dimension. The
SWEs can be used to predict tides, storm surge levels
and coastline changes from hurricanes, ocean currents,
and to study dredging feasibility. SWEs also arise in at-
mospheric flows and debris flows. Many geophysical

flows are modelled by the variants of the SWEs. One
form of the SWEs may be derived from Benney system.

The Benney equations [7], which are derived from
the two-dimensional and time-dependent motion of an
inviscid homogeneous fluid in a gravitational field by
assuming the depth of the fluid to be small compared to
the horizontal wave lengths considered, are expressed
as

∂u(x,y, t)
∂ t

+u(x,y, t)
∂u(x,y, t)

∂x
− ∂u(x,y, t)

∂y

·
∫ y

0

∂u(x,τ, t)
∂x

dτ +
∂h(x, t)

∂x
= 0 ,

∂h(x, t)
∂ t

+
∂

∂x

∫ h

0
u(x,τ, t)dτ = 0 ,

(1)

where y is the rigid bottom, y = h(x, t) is the free sur-
face, and u(x,y, t) is the horizontal velocity component.
If the horizontal velocity component u is independent
of the height h, system (1) reduces to the equation
system in the classical water theory corresponding to
the case of irrational motion. The corresponding wave
motion is determined by the coupled one-dimensional
nonlinear shallow water system:
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Dth(x, t)+u(x, t)Dxh(x, t)+h(x, t)Dxu(x, t) = 0 ,

Dtu(x, t)+u(x, t)Dxu(x, t)+Dxh(x, t) = 0 .
(2)

The aim of this paper is to obtain an analytical solution
of the system described by (2) by using the homotopy
perturbation method (HPM). This method was first
proposed by He [8] and was successfully applied to
solve nonlinear wave equations [9]. The essential idea
of this method is to introduce a homotopy parameter,
say p, which takes values from 0 to 1, when p = 0, the
system of equations usually reduces to a sufficiently
simplified form, which normally admits a rather sim-
ple solution. As p gradually increases to 1, the system
goes through a sequence of deformations, the solution
for each of which is close to that of the previous stage
of deformation. Eventually at p = 1, the system takes
the original form of the equation and the final stage of
deformation gives the desired solution. One of the most
remarkable features of HPM is that usually just few
perturbation terms are sufficient for obtaining a rea-
sonably accurate solution. In recent years, the applica-
tion of the homotopy perturbation method in nonlinear
problems has been devoted by scientists and engineers,
because this continuously deforms a simple problem
easy to solve into the difficult problem under study.
Many authors [10 – 17] applied HPM to solve a vari-
ety of nonlinear problems of physical and engineering
interests. Recently, Wei et al. [18 – 20] have applied to
obtain the solutions of the fractional partial differen-
tial equation in physics by using the implicit fully dis-
crete local discontinuous Galerkin method. Recently,
Younesian et al. [21 – 23] and Yıldırım et al. [24] have
solved many physical models by using different meth-
ods.

To illustrate the basic ideas of HPM for fractional
differential equations, we consider the following prob-
lem:

Dnα
∗t u(x, t) = v(x, t)−Lu(x, t)−Nu(x, t) ,

n−1 < nα ≤ n , n ∈ N , t ≥ 0 , x ∈ Rn ,
(3)

subject to the initial and boundary conditions

u(i)(0,0) = ci , B

(
u,

∂u
∂x j

,
∂u
∂ t

)
= 0 ,

i = 0,1,2, . . . ,m−1 , j = 1,2,3, . . . ,n ,

(4)

where L is a linear operator, while N is a nonlinear op-
erator, v is a known analytical function, and Dα

∗t de-
notes the fractional derivative in the Caputo sense [3].

u is assumed to be a causal function of time, i. e., van-
ishing for t < 0. Also u(i)(x, t) is the ith derivative of u.
ci, i = 0,1,2, . . . ,m− 1 are the specified initial condi-
tions, and B is a boundary operator.

We construct the following homotopy:

(1− p)Dnα
∗t u(x, t)+ p

(
Dnα
∗t u(x, t)+Lu(x, t)

+Nu(x, t)− v(x, t)
)

= 0 , p ∈ [0,1] ,
(5)

which is equivalent to

Dnα
∗t u(x, t)+ p

(
Lu(x, t)+Nu(x, t)

− v(x, t)
)

= 0 , p ∈ [0,1] .
(6)

The homotopy parameter p always changes from zero
to unity. In case p = 0, (6) becomes

Dnα
∗t u(x, t) = 0 , (7)

when p = 1, (6) turns out to be the original fractional
differential equation. The homotopy parameter p is
used to expand the solution in the form

u(x, t) = u0(x, t)+ pu1(x, t)+ p2u2(x, t)
+ pu3(x, t)+ . . . .

(8)

For nonlinear problems, we set Nu(x, t) = S(x, t). Sub-
stituting (8) into (6) and equating the terms with iden-
tical power of p, we obtain a sequence of equations of
the form

p0 : Dnα
∗t u0(x, t) = 0 ,

p1 : Dnα
∗t u1(x, t) =−Lu0(x, t)−S0(u0(x, t))+ v(x, t) ,

p2 : Dnα
∗t u2(x, t) =−Lu1(x, t)−S1(u0(x, t),u1(x, t)) ,

p j : Dnα
∗t u j(x, t) =−Lu j−1(x, t)−S j−1(u0(x, t),u1(x, t),

u2(x, t), . . . ,u j−1(x, t)) ,
j = 2,3,4, . . . .

(9)

The functions S0,S1,S2, . . . satisfy the equation

S
(

u0(x, t)+ pu1(x, t)+ p2u2(x, t)+ p3u3(x, t)+ . . .
)

= S0(u0(x, t))+ pS1

(
u0(x, t),u1(x, t)

)
+ p2S2

(
u0(x, t),u1(x, t),u2(x, t)

)
+ . . . .

(10)

Applying the inverse operator Jα
t where Jα

t f (t) =
1

Γ (α) ∫
t
0(t−τ)α−1 f (τ)dτ , (α > 0, t > 0), on both sides

of (9) and considering the initial and boundary condi-
tions, the various components of the series solution are
given by
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u0(x, t) =
n−1

∑
i=0

ci
t i

i!
, (11)

u1(x, t) =−Jnα
t (Lu0(x, t))−Jnα

t S0(u0(x, t))+Jnα
t v(x, t),

u j(x, t) =−Jnα
t (Lu j−1(x, t))−Jnα

t S j−1

(
u0(x, t),u1(x, t),

u2(x, t), . . . ,u j−1(x, t)
)

, j = 2,3,4, . . . .

Hence, we get the HPM solution u(x, t) as

u(x, t) =
∞

∑
i=0

ui(x, t) . (12)

We consider the following fractional version of the
standard nonlinear shallow water system (2):

Dα
t h(x, t)+u(x, t)Dxh(x, t)+h(x, t)Dxu(x, t) = 0 ,

0 < α ≤ 1 ,

Dβ

t u(x, t)+u(x, t)Dxu(x, t)+Dxh(x, t) = 0 ,

0 < β ≤ 1 ,

(13)

with initial conditions

h(x,0) =
1
9
(x2−2x+1) and u(x,0) =

2
3
(1−x), (14)

where the fractional derivatives Dα
t = ∂

∂ tα , Dβ

t = ∂

∂ tβ

are in the Caputo sense [1 – 6]. The nonlinear shal-
low water system (13) has the exact solutions h(x, t) =
(x−1)2

9(t−1)2 and u(x, t) = 2(x−1)
3(t−1) , [7] for α = β = 1.

2. Basic Definitions of the Fractional Calculus

In this section, we give some definitions and proper-
ties of the fractional calculus which are used further in
this paper.

Definition 1. A real function f (x), x > 0, is said to
be in the space Cµ , µ ∈ R, if there exists a real num-
ber p(> µ), such that f (x) = xp f1(x), where f1(x) ∈
C[0,∞), and it is said to be in the space Cm

µ if and only
if f (m) ∈ Cµ , m ∈ N.

Definition 2. The Riemann–Liouville fractional in-
tegral operator (Jα) of order α ≥ 0 of the function
f ∈ Cµ , µ ≥−1, is defined as

Jα f (x) =
1

Γ(α)

∫ x

0

f (t)
(x− t)1−α

dt , α > 0 , x > 0 ,

J0 f (x) = f (x) .

Properties of the operator Jα , can be found in [1 – 4];
we mention only the following. For f ∈ Cµ , µ ≥ −1,
α,β ≥ 0, and γ ≥−1:
1.
(
Jα Jβ

)
f (x) = Jα+β f (x),

2.
(
Jα Jβ

)
f (x) =

(
Jβ Jα

)
f (x),

3. Jα xγ = Γ (γ+1)
Γ (γ+α+1) .

The Riemann–Liouville derivative has certain dis-
advantages when trying to model real world phenom-
ena with fractional differential equations. Podlubny [3]
and Gorenflo et al. [25] have pointed out that the Ca-
puto fractional derivative represents a short of regular-
ization in the time origin for the Riemannian–Liouville
fractional derivative and satisfies the requirements of
being zero when applied to a constant. Besides, the Ca-
puto definition does not use the fractional order deriva-
tive in the initial condition, thus is convenient in physi-
cal and engineering applications where the initial con-
ditions are usually given in terms of the integer-order
derivatives.

Definition 3. The fractional derivatives Dα of f (x) in
the Caputo’s sense is defined as

Dα f (x) = Jm−α Dm f (x)

=
1

Γ(m−α)

∫ x

0

f (m)(t)
(x− t)α+1−m dt ,

α > 0 , x > 0 ,

for m−1 < Re(α)≤ m, m ∈ N, f ∈ Cm
−1.

The following are two basic properties of the Ca-
puto’s fractional derivative:

Lemma 1. If m−1 < α ≤m, m ∈N and f ∈Cn
µ , µ ≥

−1, then

(Dα Jα) f (x) = f (x) ,

(Jα Dα) f (x) = f (x)−
m−1

∑
i=0

f i(0+)
xi

i!
.

The Caputo fractional derivatives are considered
here because it allows traditional initial conditions to
be included in the formulation of the problem.

Definition 4. For m to be the smallest integer that ex-
ceed α , the Caputo time fractional derivatives operator
of α > 0 is defined as
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Dα
t u(x, t) =

∂ α u(x, t)
∂ tα

=


1

Γ(m−α)

∫ t

0
(t− τ)m−α−1 ∂ mu(x,τ)

∂ tm ,

for m−1 < α < m ,
∂ mu(x, t)

∂ tm , for α = m ∈ N .

3. Solution of the Given Problem by HPM

In this section, the application of the homotopy per-
turbation method for coupled one-dimensional time
fractional nonlinear shallow water equations with ini-
tial condition is discussed. To do so, we construct the
homotopy:

Dα
t h+ p(uDxh+uDxh) = 0 , 0 < α ≤ 1 ,

Dβ

t u+ p(uDxu+Dxh) = 0 , 0 < β ≤ 1 .
(15)

Now applying the classical perturbation technique, we
assume that the solutions h(x, t) and u(x, t) of (15) may
be expressed as power series in p as follows:

h(x, t) = h0(x, t)+ ph1(x, t)+ p2h2(x, t)

+ p3h3(x, t)+ . . . ,
(16)

u(x, t) = u0(x, t)+ pu1(x, t)+ p2u2(x, t)

+ p3u3(x, t)+ . . . .
(17)

Substituting (16) – (17) into (15) and equating the co-
efficients of like powers of p, we get the following sets
of differential equations:

p0 : Dα
t h0(x, t) = 0 , Dβ

t u0(x, t) = 0 , (18)

p1 : Dα
t h1 +u0Dxh0 +h0Dxu0 = 0 ,

Dβ

t u1 +u0Dxu0 +Dxh0 = 0 ,
(19)

p2 : Dα
t h2 +(u0Dxh1 +u1Dxh0)

+(h0Dxu1 +h1Dxu0) = 0 ,

Dβ

t u2 +(u0Dxu1 +u1Dxu0)+Dxh1 = 0 ,

(20)

p3 : Dα
t h3 +(u0Dxh2 +u1Dxh1 +u2Dxh0)

+(h0Dxu2 +h1Dxu1 +h2Dxu0) = 0 ,

Dβ

t u3 +(u0Dxu2 +u1Dxu1 +u2Dxu0)+Dxh2 = 0 ,

(21)

...

pn : Dα
t hn +(u0Dxhn−1 +u1Dxhn−2 +u2Dxhn−3 + . . .

+un−1Dxh0)+(h0Dxun−1 +h1Dxun−2+h2Dxun−3

+ . . .+hn−1Dxu0) = 0 ,

Dβ

t un +(u0Dxun−1 +u1Dxun−2 +u2Dxun−3 + . . .

+un−1Dxu0)+Dxhn−1 = 0 .

(22)

The above system of nonlinear equations can be easily
solved by applying the operator Jα

t to (18) – (22) to ob-
tain the various components hn(x, t) and un(x, t), thus
enabling the series solution to be entirely determined.
The first few components of the homotopy perturba-
tion solutions for (13) with the initial conditions (14)
are as follows:

h0(x, t) = h(x,0) =
1
9
(x2−2x+1) ,

h1(x, t) =
2
9
(x−1)2 tα

Γ(α +1)
,

h2(x, t) =
4(x−1)2

9
t2α

Γ(2α +1)

+
2(x−1)2

9
tα+β

Γ(α +β +1)
,

h3(x, t) =
8(x−1)2

9
t3α

Γ(3α +1)
+

4(x−1)2

9

·
(

Γ(α +β +1)
Γ(α +1)Γ(β +1)

+
4
9

)
t2α+β

Γ(2α +β +1)

+
8(x−1)2

27
tα+2β

Γ(α +2β +1)
, . . . ,

u0(x, t) = u(x,0) =
2
3
(1− x) ,

u1(x, t) =
2
3
(1− x)

tβ

Γ(β +1)
,

u2(x, t) =
8(1− x)

9
t2β

Γ(2β +1)

+
4(1− x)

9
tα+β

Γ(α +β +1)
,

u3(x, t) =
8(1− x)

9
t2α+β

Γ(2α +β +1)
+

28(1− x)
27

· tα+2β

Γ(α +2β +1)
+

4(1− x)
9

(
Γ(2β +1)

(Γ(β +1))2

+
8
3

)
t3β

Γ(3β +1)
, . . . .

In this manner, the rest of components of the homotopy
perturbation solution can be obtained. Thus the solu-
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Fig. 1 (colour online). Comparison between exact solution h(x, t) and approximate solution h̃6(x, t) obtained by HPM.

Fig. 2 (colour online). Comparison between exact solution u(x, t) and approximate solution ũ6(x, t) obtained by HPM.

Fig. 3 (colour online). Absolute error E6(h) for α = 1.

Fig. 4 (colour online). Absolute error E6(u) for α = 1.
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Fig. 5 (colour online). Approximate solutions h̃6(x, t) for dif-
ferent values of α at t = 0.5 and β = 1.
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ferent values of β at t = 0.5 and α = 1.
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tions h(x, t) and u(x, t) of the system described by (13)
with the given initial conditions (14) is given by

h(x, t) = lim
N→∞

N

∑
n=0

hn(x, t) and

u(x, t) = lim
N→∞

N

∑
n=0

un(x, t) .

(23)

The series solution converges very rapidly. The rapid
convergence means only few terms are required to get
the analytic function.

The comparison between the exact solution and the
approximate solution obtained by HPM is depicted
through Figure 1 and 2. It can be seen from these fig-
ures that the analytical solution obtained by the present
method is nearly identical to the exact solution of the
standard gas dynamics, i. e. for the standard motion
α,β = 1.

4. Numerical Result and Discussion

The simplicity and accuracy of the proposed
method is illustrated by computing the absolute errors
Eh6(x, t) = |h(x, t)− h̃6(x, t)| and Eu6(x, t) = |u(x, t)−
ũ6(x, t)|, where h(x, t) and u(x, t) are the exact solu-
tions and h̃6(x, t) and ũ6(x, t) are the approximate solu-
tions of (13) obtained by truncating the respective so-
lutions series (16) and (17) at level N = 6. Figures 3
and 4 represent the absolute error between exact and
approximate solutions for height h(x, t) and horizon-
tal velocity u(x, t) and their associated absolute errors.

Mathematica (Version 7.0) software is used in comput-
ing and drawing the figures.

Figures 5 and 6 show the behaviour of the approx-
imate solution h(x, t) and u(x, t) for different values
α = 0.7, 0.8, 0.9 and for standard shallow water equa-
tions, i. e. at α = 1 for (13). It is seen from Figures 5
and 6 that the solution obtained by the present method
decreases very rapidly with the increase of x. The accu-
racy of the result can be improved by introducing more
terms of the approximate solutions.

5. Concluding Remarks

In this paper, the homotopy perturbation method is
applied to obtain an approximate solution of the time
fractional nonlinear shallow water equation. In HPM,
a homotopy with an embedding parameter p ∈ [0,1] is
constructed, and the embedding parameter is consid-
ered as a ‘small parameter’, which can take full advan-
tages of the traditional perturbation methods and ho-
motopy techniques. This method contains the homo-
topy parameter p, which provides us with a simple way
to control the convergence region of solution series for
large values of t. The obtained results demonstrate the
reliability of the algorithm and its wider applicability
to nonlinear fractional partial differential equations.
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