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The N = 1 supersymmetric Hirota—Satsuma equation is transformed into systems of coupled
bosonic equations by expanding fermionic superfield in terms of 2, 3, and n(n > 4) Grassmann
parameters, respectively. Taking advantage of the resulting coupled bosonic systems being linear in
the undetermined variables, the supersymmetric Hirota—Satsuma equation is solved out by using the
mapping and deformation method. Besides, the richness of the localized excitations of the supersym-

metric integrable system is discovered.
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1. Introduction

The theory of supersymmetric which was origi-
nally introduced and developed for applications in
elementary particle physics [1—3], has been exten-
sively studied in the past thirty years. Of particu-
lar interest in recent times is the class of supersym-
metric integrable systems such as the Sine—Gordon
equation, the Kadomtsev—Petviashvili (KP) hierarchy,
the Korteweg—de Vries (KdV) hierarchy, the Boussi-
nesq equation, and a number of other systems [4—11],
which were all established with the supersymmetriza-
tion of corresponding bosonic integrable models.
These supersymmetric equations involve Grassmann
variables including both even (commuting or bosonic)
and odd (anticommuting or fermionic) variables.

Among the various techniques which have been ap-
plied to generate soliton solutions of supersymmet-
ric integrable systems [12—17], a simple bosonization
method was recently proposed [18, 19]. This method
gives a proper bosonization procedure in the complex
fermionic fields in the usual quantum field theory and
has the advantage that it can effectively avoid difficul-
ties caused by intractable fermionic fields which are
anticommuting. In this paper, we will use this method
to study the supersymmetric Hirota—Satsuma equation
and find new exact solutions of the supersymmetric in-
tegrable systems.

As we have known, the Hirota—Satsuma equation
Uyt U Uy~ Uy — Uyy — Uyy =0 €))

is proposed to describe interactions of two long waves
with different dispersion relations [20]. It is found
that the Hirota—Satsuma equation is just an example
of many integrable systems arose from the Drinfeld—
Sokolov theory [21, 22]. Some significant properties
of the equation have been revealed in the past years.
For instance, the Hirota—Satsuma equation possesses
bilinear form [23], Lax pair [24 —26], Bécklund trans-
formations [27], Darboux transformations [28 —30],
Painlevé property [25, 26], infinitely many symmetries
and conservation laws [31] etc. The N'= 1 supersym-
metric Hirota—Satsuma (sHS) equation is established
by extending the classical spacetime (x,#) to a super-
spacetime (0,x,t), where 6 is a Grassmann variable,
and the field u to a fermionic superfield

@(0,x,1) = E(x,1) + Ou(x,1). 2)
Then, we get the nontrivial fermionic extension result
D*®,+ O,D’ D+ 2D’ PDP, —D* P — D, =0, (3)

where D = dg + 00, is the covariant derivative satis-
fying D?> = 9,. The component version of (3) reads
as
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Buyu; + 26}:&” + ét éxx F Uyl — Uy —uy =0, (4a)
&txx + zéxut + étux - &x - &t =0, (4b)

where u and £ are bosonic and fermionic component
fields, respectively.

In this paper, we concentrate on the bosonization
of the supersymmetric Hirota—Satsuma (sHS) equa-
tion based on (4). The detailed content is organized
as follows: In Section 2 and 3, the sHS equation is
bosonized into a coupled bosonic-looking system by
expanding the supperfields with respect to two and
three fermionic parameters, respectively. The general
solutions of the model are found by using the map-
ping and deformation method, meanwhile some spe-
cial types of nontravelling wave solutions are also ob-
tained. In the last section, we extend the bosoniza-
tion approach of the sHS system into the case of n
fermionic parameters and get the exact solution in the
general form. Final section contains a brief discussion.

2. Two Fermionic Parameters Bosonization and its
Solutions

In order to get rid of the trouble caused by the an-
ticommutative fermionic field of the supersymmetric
equations, let us first expand the component fields &
and u by two fermionic parameters as the following
form [19, 20]:

(52)
(5b)

E(x,t) =p1&i+p2Gs,
u(x,t) =up +u12818,

where {) and {, are two Grassmann parameters, while
the coefficients p; = pi(x,1), p2 = p2(x,t), up =
uo(x,t), and u1p = up(x,t) are four classical real or
complex functions with respect to the spacetime vari-
ables x and 7. Hence from (4), we obtain the system for
the components of u(x,#) and & (x,?):

3ug o +uo por — o x — to; =0, (6a)
pl,txx+2pl,xu0,t+pl,tu07x7pl,x7pl,l:Oa (6b)
DP2axx +2P2 xU0s + P2sttox — P2x— P2, =0, (6¢)
3uip cuo s + 33U U x — U2+ UL 100 — U2,

12, x40t 12,:U40.x 12,x 12,txx 12,¢ (6d)

=2p2xP1xt —2P1xP2xt + P2.4P1xx — P14 P2xx »

that is just the bosonic system of the original sHS
equation (3) bosonized with two fermionic parameters.
Equation (6a) is the integrated form of the Hirota—
Satsuma equation which has been widely studied.
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Equations (6b) and (6¢) are linear homogeneous in p;
and p,, respectively, and (6d) is linear nonhomoge-
neous in u1p. Therefore these pure bosonic equations
can be solved out one after another in principle. So
the bosonization approach can be used to get exact so-
lutions of supersymmetric systems without too much
difficulty and that is a big advantage of this method.

Now let us consider the travelling wave solutions
of the bosonic system (6). Introducing the travelling
wave variable X = kx + wt + ¢y with constants k, o,
and co, then (6) is transformed to the ordinary differ-
ential equations (ODEs)

K oug xxx + 3koug y — (k+ o)ugx =0, (7a)
K wpi xxx +3kop xuox — (k+®)pix =0,  (7b)
K wp2 xxx +3wkpa xuox — (k+@)prx =0,  (7c)
K ou + 6kwu upx —(k+ow)u

12,XXX 12xuox — ( Jui2,x (7d)

= 3K 0(p2.xP1 xX — P1LXP2XX) -

Notation: The travelling waves in the superspace,
D(x,t,0) = @(kx + of + co + §0), with Grassmann
constant § are different from those in the usual space-
time {x,7}. Hereafter, the travelling waves be discussed
in this paper are only in the usual spacetime {x,} not
in the superspace {x,z,0}.

It is obviously that (7a) is the travelling wave reduc-
tion of the Hirota—Satsuma equation of which the solu-
tions have been studied widely. So we try to build the
mapping and deformation relation between the travel-
ling wave solutions of (7a) and (7b)—(7d), and then
to construct the exact solutions of the sHS equation
by using the known solutions of the Hirota—Satsuma
equation.

To this end, we first solve out up x from (7a). The
result reads as

i o+k
uox =~

2k 2ko ®

In order to get the mapping relations of pi, ps,
and u1, we introduce the variable transformations as
follows:

p1(X) =Pi(uo(X)), p2(X) = Pr(uo(X)),

u2(X) = Una(up(X)). ©

Using the transformation (9) and vanishing ug x
via (8), the linear ODEs (7b)—(7d) are changed to
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d3P1 (uo)

(—wu} + o +k) 5
dug
5 (10a)
d P1 (uo)

— 6(L)Lt0
du%

= 0,
&P,
(—ouf+ o +k) 7;(3“0)
Uy
10b
d2P2(u0) ( )

— 6a)u0
du%

:0,

U1 (uo) dU12(uo)
2 12\U0 12\U0
—Ouy+ W+ k + 6(1)
( 0 ) 1 8 d 0

(10c¢)

d’U

_ 6uowﬂ = F(up),
dug

where

Flao) (- o410 )

dug du%

Solving the above equations, the mapping and defor-
mation relations are constructed as

Py (uo) = Al
1 0) = o(o+k)(oud — o —k)

—1 wug
3A uptanh ( w(a)+k))

(11a)

(0+k)2\/o(o+k)
3A 1 In(—(w +k))
2(0+k) o

— A4
Paluo) = o(o+k) (0w — o —k)

—1 [QI70)
3A4uptanh < w(a)+k))

+Asug+As,

(11b)

(0+k)*\/o(o+k)
3A4In(—(@+k))
2(0+k) o
A7G(u0)
a)u(z) —w—k

15
16/ o(o+k)(0+k)3((ud—1)w—k)

|5+ D406 - o8 [ G0F0)

+Asug +Ag,

Uia(uo) = +Ag(5(x)u%—(0—k)

(11c)

+6() [ 507 - 0= B0~ 1) - HF0)D|.

where A;, (i =1,2,...,8) are arbitrary constants and

Gluo) = <(u3 _ ;) o ;k> (R~ Do —k)
-tanh™! (\/WW))

0+k
13k 13w
— U <(DM(2) — F — 15> AV a)(w+k>,
~ "UQ
Fuo) = [ F(3)dy-+by

with an integral constant by.

Thus, we get the general two-fermionic parameter
travelling wave solutions of the sHS equation from (5),
(9), and (11) as following:

A7G(Lt0)

= S 4 As(Soul— o —k 12
u u0+{wu(2)—a)—k+ s(5oug ) (12a)

15
16y/0(0+k) (0+k)3 (12— o —k)
04K~ Do) [ GOF)dy+Glu)

(-5i+1)

~/u0(5(uy2 —0—) (@O —1)—KE®) dy} }gl 6,

Ay
(®+k)(0ui — o —k)

EZCI[(D

" h71 g
3A ugtan ( w(w+k)) 3A1In(— (@ +k))

2(0+k)’ow
Ay
o(o+k)(oud — o —k)

(0+k)?

+Asug +A3:| +& [

o(w+k)
(12b)

—1 ug
3A4up tanh <w<w+k)> 3A4In(— (@)

2(0+k)’ow

(0+k)?\/o(o+k)

+A5M0 +A6:|

with the known solution uy of the usual Hirota—
Satsuma equation.

Taking A1 =A3 = A4 :A6 =A7 = bo =01in (12),
we get a special form of travelling wave solution

Py (up) = Aaup, (13a)
Ps(ug) = Asup, (13b)
Ur2(uo) = Aguo x (13¢)
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where Ag = —ﬁ(w = —k). More generally, for any
given ug(x,z) being a solution of the usual Hirota—
Satsuma equation, a certain type of solutions of the
bosonic equation (7) can be constructed as

p1=Azug, (14a)
p2 = Asuo, (14b)
uip = O'(uo) s (140)

where o (up) represents any symmetry of the usual
Hirota—Satsuma equation.

In (14), ug can be chosen as any solution of the usual
Hirota—Satsuma equation, so we have much freedom
to choose ug so as to construct solutions of the sHS
equation. It is easily verified that the first three equa-
tions of the bosonic-looking equations (6) are satis-
fied automatically if p; and p, are taken as the form
of (14a)—(14b). Meanwhile, the right hand side of the
nonhomogeneous equation (6d) vanishes after we sub-
stitute p; and p; into it. This means that u;, from (6d)
exactly satisfies the symmetry equation of the inte-
grated form of the Hirota—Satsuma equation (6a). As
mentioned before, the Hirota—Satsuma equation pos-
sesses infinitely many symmetries, so infinitely many
u1» can be generated. Furthermore, we can construct
not only travelling wave solutions but also many other
new types of solutions of the sHS equation using
the solutions and infinitely many symmetries of the
Hirota—Satsuma equation.

3. Three Fermionic Parameters Bosonization

The component fields & and u can also be ex-
panded by three Grassmann parameters i, §, and {3
as following:

(152)
(15b)

E(x,t) =p181+ P28+ p3G+p13li 83,
u(x,t) = uo +u281 8 +u23 883 +u31 8341,

where the coefficients ug, uiz, w23, usr, pi23, pi =
pi(x,t) (i = 1,2,3) are eight usual real or complex
functions with respect to the spacetime variables x and
t. Substituting the above equations into the sHS sys-
tem (4), we get the bosonized form

3ug xuos + U x — uox — oy =0, (16a)
Plaxx + 21 U0 + P1tiox — Prx—Pp1y =0, (16b)
DP2axx T 2D2 xU0 s + P2l x — P2x — P2s =0, (16¢)
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D3xx +2p3 o + P30y — P3x—P3s =0, (16d)
3unp o r + U2 U0 x — U1 x F ULD pxx — W12
(16e)
= 2p2,xpl,xt - 2Pl,xp2,xt + P2tP1xx — P1tDP2.xx s
3un3 xuto  + 3U3 (U0 x — U3 x + U3 pxx — U3
(161)
= 2p3,xp2,xt - 2p2,xp3,xt + P3P2xx — P2t P3xx s
3uzy xuo, + 3u31 ;U0 x — U31 x + UL — UL
(16g)
= 2pl,xp3Axt - 2p3,xpl,xt + P14P3xx — P3P xx s
D123 1 + 2P 123 x40, + P123,1U0x — P123,x — P1234
= —2(p1 U3 + P23t + P3xU12,) (16h)

— P1,U23 x — P24 U3 x — P3rUI2 x -

Similar to the previous two fermionic parameters ex-
pansion case, except (16a) which is just the integrated
form of the Hirota—Satsuma equation, the rest of the
equations of bosonic equation system (16) are linear in
pi (i=1,2,3,123) and u; (I = 12,23,31), respectively.

To solve the equation system (16) in the travelling
wave solution form, let us introduce the travelling wave
variable X = kx + wt + co with constants k, @, and cg,
then the system is transformed to the OEDs

K ouo xxx + 3koug y — (k+ o)ugx =0, (17a)
K wp1 xxx +3kop xuox — (k+o)pix =0, (17b)
K wpaxxx +3koprxuox — (k+o)pax =0, (17c)
K ©p3 xxx +3kops xuox — (k+o)psx =0, (17d)
kK wuia xxx + 6kouyy xuo x — (k+ @) x (17¢)
=3k 0(paxpixx — P1XP2XX)

K wuns xxx + 6kous xuox — (k+ ©)us x (176)
= 3k2(0(p3,x172,xx —P2XDP3XX) 5

IS wu3| xxx + 6kous xuo x — (k+ @)uz; x (172)
=3k (p1xP3xx — P3XP1XX)

K @pi123 xxx + 3kopis xtox — (0 +k)p1as x (17h)

= —3kw(p1 xu3x + paxusi x +p3xiiax)-

It can be found that (17) is similar to (7) in form.
To be described in a specific manner, (17a) is the
same as (7a), while (17b)—(17d) have an analogy
with (7b)—(7c) and (17e)—(17g) with (7d). Coeffi-
cients of the left-hand side of the last equation (17h) is
the same as (17b)—(17d), but its right-hand side is re-
lated to p; and u; (I =1,2,3; j=12,23,31), not equal
to zero usually.

To solve the ODE system (17a)—(17h) by mapping
and deformation method adopted in the previous sec-
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tion, we first use the following variable transforma-

tions:

and

where

Fi(uo

P123(X) = Pio3(uo(X)) ,
u2(X) = Unn(uo(X)), u23(X) = Un3(uo(X))
uz1 (X) = Usi (uo(X))
then eliminate wuox by (8). The linear
ODEs (17b)—(17h) are then changed to
P
(—ou} + o +k) (3”0)
duty (182)
d’p,
— 6augy ’<2“°) =0, (i=1,2,3),
dug
U dU
(—ou} +o+k) 12(3”0 + 60 3U12(0)
dug dug
PU(0) (18b)
12(Uo
-6 = F]
u du% 1(“0)7
d3 U3 (up) dUn (uo)
2
— k 6w
(—ouy+ o +k) B + dug s
c
dzUzg(uo)
—6 - =F
" du% (o),
U dU
(—ou§+ o +k) 31(3u0) 60 21 (o)
d3u0 duo
U (1) (18d)
31 (U0
—6 =F
u a2 3(uo)
AU
(—oud + o+ k) —= to)
duty (18¢)
d?U123(up)
— 6w - F
dug 4(0)
=3(— a)uo—i—co—i—k) (19a)
sz(l/l() d2P1 u()) dP](u()) dZPQ(M())
dug duo duyg du% ’
=3(—oud+ 0 +k) (19b)

Fa(uo

F3(uo

Q.

sz M() d2P2 u())
du0

dP2 (uo) d2P3 (u())
du() du% ’

(19¢)

dP1 (M() dzpz uo)
duo duo

dP3 (uo) d2P1 (uo)
duo du% ’

Fy(up) =

543
—6w dU23(u0) dP1 (u()) + dU31(u0)
duo du() duo (19d)
. dP; (up) + dU 15 (up) dPs(uo)
dug dug dug )’

By repeating the processes in the last section, the
general three fermionic parameters travelling wave so-
lution of u can be written as

hlG u()

2
u—uo+2{wu0 o—k g1(5wu5—w_k)
_ 15 .
167/ 0(0+k) (0+k)3 (13 — 1) — k) [(( 5u3+1)

4R 1Do—k) [ GOF0)d+ Glw)

'/MO(Swyz —o-k)(oO*—1)—k)E() dy] }C1C1+1

+ { 7(0:% (i(Z)O)_ -+ es(50ud— 0 —k) (20)
15 5
16y/0(o+k) (0+k)3 (12— Do —k) [«_SMOH)

04K (- Do) [ GOIRG)d+Gluo)

[ 507 - 0- B0t~ 1) -HR)®] }@a,

3 rl

é—ECI w(a)Jrk)(a)u%fw*k)
—1 u

 3nuotanh <w<£+k>) 3riin(=(0+k)

(0+kPVolo+h) — 2otklo T
+oy| + 668G @D
- leriug+ :

1o+ 3 (0 +k)((d—1)o—k)(w+k)?

-(—3((u

/ YE4(y

where

F= o~k [ HO)FO)dy-+ 3 ()

CloH(uo) ]

2
oug— o —k

o(y* —1)— k)dy> +
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~ up
in/ F(y)dy+by (1=1,2,3,4)

H (uo) = wuo((uf — 1)@ — k) tanh ™" <\/m>

w+k

- (wu% — g(a)—kk)) o(o+k)

with integral constants b; (I =1,2,3,4).

Similar to the two fermionic parameters case, for
nontravelling wave solutions (16), we just write down
a special case with

Pi = Sillg (l: 17273)a P123 = S4U0,
uip = 012(uo) , u23 = 0623(uo)
uz1 = diuiz +daurs,

(22)

where d; (i =1,2,3,4) are constants, ug is an arbitrary
solution of the Hirota—Satsuma equation while o2 (uo)
and 023(ug) are arbitrary symmetries of the Hirota—
Satsuma equation. Therefore, the sHS system (4) pos-
sesses the following special solution:

u = ug+012(uo) 8182 + 623 (u0) 8283
+ (dyur2 + douzz) 5381
E=(diCi+dalo+d383+dsl1803)ug. (23b)

When one of the Grassmann numbers §; (i = 1,2,3)
tends to zero, the solution (23) turns back to that of the
last section for two fermionic parameters.

Actually, applying the similar procedure for any
numbers of the fermionic parameters, one can obtain
various exact solutions such as the general travelling
wave solution and the special solutions like (23).

(23a)

4. N Fermionic Parameters Bosonization

Generally, the fields « and & in sHS system (4) can
be expanded by N > 2 fermionic parameters §; (i =
1,2,...,N) as following:

%]

§(x,1) =
n=1 (2421)

’ Z Piyiy--iny 1 Cil Ciz T CiZn—l )

1<i)| <+ <ipp—1 <N
(%3]
u(x,t) =up+

n=1

Z Uiyiy--iz, Cil Ciz e CiZn , (1=1,2,3),

1<i) <---<ip, <N

(24b)

where the coefficients uo, ujiy...i,, (1 <ip < <izy <
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N) and pjjiyeiy, , (1 <iyp < -+ < iz <N) are 2V
real or complex bosonic functions of classical space-
time variable x,¢. Substituting the above expansion
into (4), we obtain the following bosonic system of 2V
equations:

3ug xuos + U0 pxx — Uox — oy =0,

0, n=1;
T(j1sj2seeesfon
—Yw, (—1) (J1sj25j2n-1)
LoPiriy-izyy = '(2uijlijz"'ile‘tpif21+1"1'21+2""'/'2n71’x

Urijy i ¥ Pl g len—l"t)7

n=2,3,...,[NT+1} ,

2W2(_1)T<j1,j2)(2pijl ,xpijz,xt
+pijl,tpij2,xx)7 n= 1’
S, (— 1)T<11 J25eerdon) (2171']'1 by

Letiyiy-wip, =

Pijyijoy g i, M +pi/1ijz"'i«f2171 d

P Lo ting 1 iz Xx) ‘

_3ZW3(_1)1(“7/2’”"12”)”1‘,-1ij2~-~ij2,.,t

ui.i21+1i.i21+2"‘i/2n7x’ n=23,..., [%] ’
where

Lo = Orxx +2u0,40x + 110.x0; — 0 — 0,

Le = Opxx + 310, 0 + 3ug 10, — x — 0,

Wl:{(j17].2a---7j2n71)|1§j1<j2<"'<j2[
<2n—1, 1< juyr < jaga <+ < jam-1
<1, L<I<n—1, ji # jny ( #12) },

Wz:{(j17j2,~~~,jzn)|1§j1<j2<"'<j21—1
<2n, 1< joy<juy1 <+ <jow<2n,
LU0, oy # iy (£ D)}

Wy ={ Ut joseoe o)1 <t < o <o < ju <2,
1 < jarv1 < jouya <+ < jow < 2n,
1<i<n—1, jhl¢jh2(hl¢h2)}.

Then the component field # with N fermionic parame-
ters can be written as

(%]
u(x,t) =up+ Z

2 uiliZ"'i2)1 Cil Ci2 T ciZn )

1<i) <+ <ip, <N

+1
2
=1

(25)

=
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where
iy iyeoiy, Glo)
Uigiyiy = Uniy-eig, (0) = 2522
0
+gi1i2"'i2n (5(1)14% —— k)
15

1600+ k) (0+k)3 (- 1o —k)

: {((—Su%—&- Do +k)((ud—1)o—k)

' /uo G(y)FviliZ"'iZn (¥)dy+G(uo)

[ 502 - 0-H(O0 1)~ D, )]

Vijiy-izg1 = Biyig-izg (uo)

. . —1 wMO
3Fijiy-wiy,_ Uotanh ( w(w+k)>

(0+k)2 1/ 0(0+k)

Viipinp—1
o(o+k)(ouf—w—k)
finp_1 ln(f(erk))
2(w+k)2w
Fyiyig, g N= 13
Ciigin,_ H (o)

— Cili2"'i2nflu0+ wu%,w,k

1 _ -
+2\/w(w+k)((u(2)l)wk)(w+k)2|: (g -

—k)u() fuo H(y)EHiz'“iznq (y> dy + 3H(u0)
Y () (@02 — 1)) dy} ,

n=2,3,...,[NT+1},

37‘,‘1,'2“

si1i2"'i2n71 up

with Fy ..y, (u0) = [* Fiyiyein, () dy +biy iy . iy, and
35, [(wué+w+k><njl>uo
.([)i_jz)uou():| bl n= 15

33w, {(a)ug =@ = k) (P ijy iy
E'liz'"izn(uo) =
.(BjZI Uit Lo )“0“0] +60uo
. ZW3 (Uij1 iy iy, )'40
‘(Uij2/+1 T2 " in Juo

n:253a"'5[%]7

Eijiy-in,_, (U0) = —6@ Z(Ui_/. iy iy Juo
wi

N+1
.(I)iflifz"'iJZn—l)uo’ n=273,..., |:2:| )

where 1 represents the solution of the usual Hirota—
Satsuma equation and b , are arbitrary integral
constants.

i1,i2, 50

5. Conclusion

In summary, with a simple bosonization procedure,
the sHS system is transformed into a coupled linear
system without the intractable fermionic parameters.
The travelling wave solutions of the bosonization sys-
tems have been obtained simply by the mapping and
deformation method for the two and three fermionic
parameter cases, respectively, then the general travel-
ling wave solutions for arbitrary N > 2 fermionic pa-
rameters also have been achieved. Especially, some
special types of exact solution of sHS equation can
be obtained straightforwardly through the exact solu-
tions of the Hirota—Satsuma equation and the related
symmetries.

It should be noted that any kind of solutions of the
usual Hirota—Satsuma equation such as the solitary so-
lutions can be extended to those of the sHS equation,
and these solutions are completely different from those
obtained via other methods such as the bilinear ap-
proach [32]. This fact shows us that for the sHS equa-
tion besides the super solitons existing in the super
space-time there exist various kinds of localized ex-
citations in the usual space-time. So, it is important to
further develop the bosonization procedure such that
the known solutions obtained in other approaches can
also be included.

In this pape,r we have dealt with an integrable
supersymmetric equation but from the procedure of
bosonization, we conclude that for the nonintegrable
ones this method also work well. So this method pro-
vides an efficient way to solve supersymmetric sys-
tems and further work on this aspect needs to be
enlarged.
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