
Flow of a Giesekus Fluid in a Planar Channel due to Peristalsis
Nasir Ali and Tariq Javed

Department of Mathematics & Statistics, International Islamic University, Islamabad, Pakistan

Reprint requests to N. A.; nasirali qau@yahoo.com

Z. Naturforsch. 68a, 515 – 523 (2013) / DOI: 10.5560/ZNA.2013-0033
Received November 21, 2012 / revised March 7, 2013 / published online June 12, 2013

An attempt is made to investigate the peristaltic motion of a Giesekus fluid in a planar channel
under long wavelength and low Reynolds number approximations. Under these assumptions, the
flow problem is modelled as a second-order nonlinear ordinary differential equation. Both approxi-
mate and exact solution of this equation are presented. The validity of the approximate solution is
examined by comparing it with the exact solution. A parametric study is performed to analyze the
effects of non-dimensional parameters associated with the Giesekus fluid model (α and We) on flow
velocity, pressure rise per wavelength, and trapping phenomenon. It is found that the behaviour of
longitudinal velocity and pattern of streamlines for a Giesekus fluid deviate from their counterparts
for a Newtonian fluid by changing the parameters α and We. In fact, the magnitude of the longitudi-
nal velocity at the center of the channel for a Giesekus fluid is less than that for a Newtonian fluid. It
is also observed that the pressure rise per wavelength decreases in going form Newtonian to Giesekus
fluid. Moreover, the size of trapped bolus is large and it circulates faster for a Newtonian fluid in
comparison to a Giesekus fluid.
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1. Introduction

Peristalsis is a mechanism used by many biologi-
cal ducts such as esophagus and ureter to convey their
fluid contents. The mechanism works when a progres-
sive wave of muscular contraction propogates along
the wall of the organ. Industrial roller and finger pumps
also operate according to the principle of peristalsis.

Initial studies on peristaltic motion were focused on
exploring the fluid mechanics of the problem under the
assumptions of low Reynolds number and long peri-
staltic waves [1 – 3]. The latter developments in the
field include the work of Pozrikidis [4] for non-slender
geometry, Takabatake et al. [5] for higher Reynolds
numbers, Böhme and Friedrich [6], Raju and De-
vanathan [7, 8], Srivastava and Srivastava [9], Siddiqui
and Schwarz [10], Siddiqui et al. [11], Mekheimer
et al. [12], Mekheimer [13], Hayat et al. [14, 15], and
Haroun et al. [16] for non-Newtonian fluids. However,
the survey of literature reveals that very little attention
is given to peristaltic flows of viscoelastic fluid models
represented by nonlinear differential constitutive equa-
tions under widely used assumptions of long wave-
length and low Reynolds number. Much of the work

is based on the constitutive equations of generalized
Newtonian fluid models [17 – 20], retarded motion ex-
pansion [21, 22], and polar fluids [23, 24].

The constitutive equations proposed by Ol-
droyd [25], White and Metzner [26], and Giese-
kus [27, 28] have been rarely used in the study of
peristaltic flows. Few studies have been conducted
using Oldroyd constitutive equations. For example,
Hayat et al. [29] analyzed the peristaltic motion of an
Oldroyd-B fluid in a planar channel by assuming the
wave number to be small. They have not adopted long
wavelength and low Reynolds number assumptions in
their analysis. The problem with the constitutive equa-
tion of Oldroyd-B fluid is that it reduces to the consti-
tutive equation of a Newtonian fluid under long wave-
length and low Reynolds number assumptions. The
simplest model proposed by Oldroyd which captures
viscoelastic features under long wavelength assump-
tion is the Oldroyd 4-constant model. Similarly, the
Oldroyd 8-constant model can also be used under long
wavelength assumption. Ali et al. [30, 31] were the first
to discuss the peristaltic motion of Oldroyd 4-constant
and Oldroyd 8-constant models under long wavelength
approximation. However, no attempt has been made
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to use the Giesekus constitutive equation for studying
peristaltic flow under long wavelength assumption.
The Giesekus constitutive equation is proved to be
more useful than the Oldroyd 8-constant constitutive
equation because it gives material functions that are
much more realistic than those obtained from the
Oldroyd 8-constant constitutive equation [32]. Some
recent studies regarding elementary flows of the
Giesekus model can be found in [33 – 35]. Motivated
by the above facts, in the present paper, we study
the peristaltic motion of a Giesekus fluid under long
wavelength and low Reynolds number assumptions.

In Section 2, we formulate the problem by stating
the underlying assumptions and governing equations.
The solution of the problem is obtained in Section 3.
Section 4 presents a brief discussion of the results.
Finally, we conclude the paper in Section 5.

2. Governing Equations

The flow is assumed to be incompressible, therefore
the laws of conservation of mass and momentum take
the following form:

divV̄ = 0 , (1)

ρ
dV̄
dt̄

=−∇p̄+divS̄ , (2)

where V̄ is the velocity, ρ the density, d/dt̄ the ma-
terial derivative, p̄ the pressure, and S̄ the extra stress
tensor. The extra stress tensor for a Giesekus fluid sat-
isfies the expression [27, 28, 32]

S̄ +
αλ̄

µ

(
S̄ · S̄
)
+ λ̄

DS̄
Dt̄

= µĀ1 , (3)

in which µ and λ̄ are model parameters representing
zero-shear viscosity and zero-shear relaxation time, re-
spectively [32]. Ā1 is the first Rivlin–Ericksen tensor,
defined by

Ā1 = L̄+ L̄T , (4)

where L̄ is the velocity gradient and

DS̄
Dt̄

=
dS̄
dt̄
− L̄S̄− S̄L̄T (5)

is the upper convected time derivative. The parame-
ter ᾱ appearing in (3) is another model parameter, and
according to Bird et al. [32], the term containing ᾱ is

due to the anisotropic hydrodynamic drag on the con-
stituent polymer molecules. In view of Giesekus [27,
28] the values of ᾱ should be such that 0 ≤ α ≤ 1.
However, Bird et al. [32] proposed that for realistic
properties 0 ≤ α ≤ 0.5. It should be noted that the
model (3) includes the convected Maxwell model (for
ᾱ = 0) and the Newtonian fluid model (for ᾱ = λ̄ = 0)
as limiting cases.

3. Problem Formulation

We consider a channel of width 2a filled with a ho-
mogenous incompressible Giesekus fluid. The walls of
the channel are assumed to be flexible. Further assume
two symmetric infinite wave trains travelling with ve-
locity c along the walls. If X̄ and Ȳ denote the longitu-
dinal and transverse coordinates, respectively, then the
wall surface is given by

h̄(X̄ , t̄) = a+bcos

[
2π

λ ∗
(X̄− ct̄)

]
. (6)

In (6), b is the wave amplitude, λ ∗ the wavelength, and
t̄ the time.

Since the flow is two-dimensional, therefore, we
define

V̄ = [Ū (X̄ ,Ȳ , t̄) ,V̄ (X̄ ,Ȳ , t̄) ,0] , (7)

in which Ū and V̄ are the longitudinal and transverse
velocity components, respectively.

With the above definition of velocity field, (1) – (5)
give

∂Ū
∂ X̄

+
∂V̄
∂Ȳ

= 0 , (8)

ρ

(
∂

∂ t̄
+Ū

∂

∂ X̄
+V̄

∂

∂Ȳ

)
Ū

=− ∂ p̄
∂ X̄

+
∂ S̄X̄ X̄

∂ X̄
+

∂ S̄X̄Ȳ

∂Ȳ
,

(9)

ρ

(
∂

∂ t̄
+Ū

∂

∂ X̄
+V̄

∂

∂Ȳ

)
V̄

=−∂ p̄
∂Ȳ

+
∂ S̄X̄Ȳ

∂ X̄
+

∂ S̄ȲȲ

∂Ȳ
,

(10)

S̄X̄ X̄ + λ̄

[(
∂

∂ t̄
+Ū

∂

∂ X̄
+V̄

∂

∂Ȳ

)
S̄X̄ X̄ −2

∂Ū
∂ X̄

S̄X̄ X̄

−2
∂Ū
∂Ȳ

S̄X̄Ȳ

]
+

αλ̄

µ

(
S̄2

X̄ X̄ + S̄2
X̄Ȳ

)
= 2µ

∂Ū
∂ X̄

,

(11)
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S̄X̄Ȳ + λ̄

[(
∂

∂ t̄
+Ū

∂

∂ X̄
+V̄

∂

∂Ȳ

)
S̄X̄Ȳ −

∂V̄
∂ X̄

S̄X̄ X̄ (12)

− ∂Ū
∂Ȳ

S̄ȲȲ

]
+

αλ̄

µ

(
S̄X̄ X̄ +S̄ȲȲ

)
S̄X̄Ȳ = µ

(
∂Ū
∂Ȳ

+
∂V̄
∂ X̄

)
,

S̄ȲȲ + λ̄

[(
∂

∂ t̄
+Ū

∂

∂ X̄
+V̄

∂

∂Ȳ

)
S̄ȲȲ −2

∂V̄
∂ X̄

S̄X̄Ȳ

−2
∂V̄
∂Ȳ

S̄ȲȲ

]
αλ̄

µ

(
S̄2

ȲȲ + S̄2
X̄Ȳ

)
= 2µ

∂V̄
∂Ȳ

.

(13)

Now, for subsequent analysis, we switch from labora-
tory frame (X̄ ,Ȳ ) to wave frame (x̄, ȳ) which is moving
with the wave speed c. In the wave frame, the flow be-
comes steady. The coordinates and velocities in the two
frames are related through

x̄ = X̄− ct̄ , ȳ = Ȳ ,

ū = Ū− c , v̄ = V̄ ,
(14)

where ū and v̄ are respective dimensional velocity com-
ponents parallel to x̄ and ȳ in the wave frame. The gov-
erning equation can be made dimensionless by intro-
ducing the following dimensionless variables:

x =
2π x̄
λ ∗

, y =
ȳ
a

, u =
ū
c

, v =
v̄
c

,

h =
h̄
a

, S =
aS̄
µc

, p =
2πa2

λ ∗µc
p̄ .

(15)

Finally, the governing equation in terms of stream
function ψ(x,y) defined by the relations

u =
∂ψ

∂y
, v =−δ

∂ψ

∂x
, (16)

can be written as

δRe

[(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)
∂ψ

∂y

]
=−∂ p

∂x
+δ

∂Sxx

∂x
+

∂Sxy

∂y
,

(17)

−δ
3Re

[(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)
∂ψ

∂x

]
=−∂ p

∂y
+δ

2 ∂Sxy

∂x
+δ

∂Syy

∂y
,

(18)

δRe

[(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)(
∂ 2ψ

∂y2 +δ
2 ∂ 2ψ

∂x2

)]
= δ

∂ 2 (Sxx−Syy)
∂x∂y

+
(

∂ 2

∂y2 −δ
2 ∂ 2

∂x2

)
Sxy ,

(19)

Sxx +We

[
δ

(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)
Sxx−2δ

∂ 2ψ

∂x∂y
Sxx

−2
∂ 2ψ

∂y2 Sxy

]
+αWe

(
S2

xx +S2
xy

)
= 2δ

∂ 2ψ

∂x∂y
,

(20)

Sxy +We

[
δ

(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)
Sxy +δ

2 ∂ 2ψ

∂x2 Sxx

− ∂ 2ψ

∂y2 Syy

]
+αWeSxy (Sxx +Syy)

=
(

∂ 2ψ

∂y2 −δ
2 ∂ 2ψ

∂x2

)
,

(21)

Syy +We

[
δ

(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)
Syy +2δ

2 ∂ 2ψ

∂x2 Sxy

+2δ
∂ 2ψ

∂x∂y
Syy

]
+αWe

(
S2

xy +S2
yy

)
=−2δ

∂ 2ψ

∂x∂y
,

(22)

where δ (= 2πa/λ ∗) is the dimensionless wave num-
ber, Re (= ρca/µ) is the Reynolds number, and We
(= λ̄c/a) is the Weissenberg number. It should be
noted that by defining the stream function, the continu-
ity equation (8) is automatically satisfied, and the com-
patibility equation (19) is obtained by eliminating p
between (17) and (18) (it represents the vorticity trans-
port equation). Now, in view of long wavelength and
low Reynolds number approximations [2, 10, 12 – 19],
(17) – (22) reduce to

∂Sxy

∂y
=

dp
dx

, (23)

∂ 2Sxy

∂y2 = 0 , (24)

Sxx−2We
∂ 2ψ

∂y2 Sxy +αWe
(
S2

xx +S2
xy

)
= 0 , (25)

Sxy−We
∂ 2ψ

∂y2 Syy +αWeSxy (Sxx +Syy) =
∂ 2ψ

∂y2 , (26)

Syy +αWe
(
S2

xy +S2
yy

)
= 0 . (27)

The dimensionless pressure rise over one wavelength
can be calculated via the expression

∆p =
∫ 2π

0

dp
dx

dx . (28)

Exploiting the flow symmetry about the x-axis, we
shall solve the flow problem only in the half flow do-
main y ∈ [0,h].

The appropriate boundary conditions in the wave
frame are [16 – 18]
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ψ = 0 ,
∂ 2ψ

∂y2 = 0 at y = 0 , (29)

ψ = F ,
∂ψ

∂y
=−1 , at y = h = 1+ϕ cosx , (30)

where ϕ = b/a is the amplitude ratio. The dimen-
sionless mean flows Θ , in laboratory frame, and F in
the wave frame are related according to the following
expression [18]:

Θ = F +1 . (31)

4. Solution of the Problem

Equation (24) can be integrated to give

Sxy = Ay , (32)

where we have used the second boundary condition
in (2). The value of the integration constant A phys-
ically represents the value pressure gradient dp/dx.
Now, from (26) and (27), we can write

Sxx =
(1+WeSyy)∂ 2ψ/∂y2

αWeSxy
−

1+αWeSyy

αWe
, (33)

Syy =
−1±

√
1−4α2We2S2

xy

2αWe
. (34)

The appropriate sign in (34) must be positive as dis-
cussed by Schleiniger and Weinacht [33]. Insertion
of (33) into (25) yields the following determining
equation for ψ:

∂ 2ψ

∂y2 =
1+(2α−1)WeSyy

(1+WeSyy)
2 Sxy . (35)

With the help of (32) and (34), (35) can be put in the
form

∂ 2ψ

∂y2 =
[

1+(2α−1)
{(
−1+

√
1−4α2We2A2y2

)
/

2α

}][(
1+
{(
−1+

√
1−4α2We2A2y2

)
/

2α

})2
]−1

Ay . (36)

The above equation is subject to the boundary condi-
tions ψ(0) = 0, ψ(h) = F , and ∂ψ/∂y

∣∣
y=h =−1.

Integration of above equation twice and utilization
of boundary conditions ψ(0) = 0 and ∂ψ/∂y

∣∣
y=h =

−1 yields the following expression of ψ:

Fig. 1. Schematic diagram of the flow geometry for a = 1,
b = 0.4, λ ∗ = 2, and t = 0.

ψ =
1
4

y

[
−4−

(
2Ah2(2α−1)

(
1−2α (37)

+
√

1−4α2A2h2We2
))/

(α−1+αA2h2We2)

+
{

24α(1−α)−4+(2α−1)
(

4
√

1−4α2A2h2We2

−
√

1−4α2A2y2We2
)}/

AαWe2

]
+

1

8α2A2We3

·

[
(2α−1)(1−24α(1−α))sin−1(2AyαWe)+8α

3/2

·
√

(α−1)/α2(1−6α(1−α)) tan−1

(
AyWe√

(α−1)/α

)

− tan−1

(
AyWe(2α−1)

/√
(1−4α2A2y2We2)(α−1)

α

)

·8
√

α(α−1)(1−6α(1−α))+ ln

{(
2α−1

+
√

1−4α2A2y2We2
)/(

2α−1

+
√

1−4α2A2h2We2
)}
·4αAyWe(1−8α(1−α))

]
.

To calculate the remaining unknown constant A, we
make use of the boundary condition ψ(h) = F . This
gives

1
4

h

[
−4−

(
2Ah2(2α−1)

(
1−2α (38)

+
√

1−4α2A2h2We2
))/

(α−1+αA2h2We2)
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+
{

24α(1−α)−4+3(2α−1)
√

1−4α2A2h2We2
}

/
AαWe2

]
+

1

8α2A2We3

[
(2α−1)(1−24α(1−α))

· sin−1(2AhαWe)+8α
3/2
√

(α−1)/α2(1−6α(1−α))

· tan−1
(

AhWe
/√

(α−1)/α

)
−tan−1

(
AhWe(2α−1)/√

(1−4α2A2h2We2)(α−1)/α

)
·8
√

α(α−1)(1−6α(1−α))

]
= F ,

which is a strongly nonlinear algebraic equation. This
equation is solved using symbolic software Mathemat-
ica 6 and at each cross-section x. Having the value of

(b) (a) 
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Fig. 2. Plots showing the comparison of approximate (solid line) and exact solution (dots) for F =−0.5, ϕ = 0.4, and x = 0.
(a) α = 0.3, We = 1; (b) α = 0.3, We = 2; (c) α = 0.3, We = 3; (d) α = 0.5, We = 3.

A, the solution given by (37) is completely known at
each cross-section x.

An approximate solution of (36) can be obtained by
expanding the radical term in power series using bino-
mial expansion and retaining the first two terms. This
yields

∂ 2ψ

∂y2 =
1−α(2α−1)We2A2y2

(1−αWe2A2y2)2
Ay . (39)

Integration of above equation gives

ψ =
1

2α3/2We3A2

[
(4−6α) tanh−1

(√
αWeAy

)
−
(√

αWeAy
/

(αWe2A2h2−1)
){
−2+2α

−2αWe2A+2α
2We4A3h2 +

(
−1−2α

2We2A2h2
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Fig. 3. Plots showing u(y) at cross-section x = π for different values of (a) We (α = 0.5) and (b) α (We = 0.5). The other
parameters are F =−0.8 and ϕ = 0.4.
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Fig. 4. Plots showing ∆p versus Θ for different values of (a) We (α = 0.2) and (b) α (We = 0.5) with ϕ = 0.4.

+2α +αWe2A2h2) ln(1−αWe2A2h2)
}

(40)

−
√

α(2α−1)WeAy

{
−2+ ln

(
1−αWe2A2y2

)}]
,

where the unknown constant A at each cross-section
can be obtained by solving the following transcenden-
tal equation:

1

2α3/2We3A2

[
(4−6α) tanh−1 (√

αWeAh
)

−
(√

αWeAh
/(

αWe2A2h2−1
)){

−2+2α

−2αWe2A+2α
2We4A3h2+

(
−1−2α

2We2A2h2+2α

+αWe2A2h2
)

ln
(
1−αWe2A2h2)}−√α(2α−1)

·WeAh

{
−2+ ln

(
1−αWe2A2h2)}]= F . (41)

It is worth mentioning that in the limiting case when
α → 0 or We→ 0 both solutions of (36) reduce to the
solution of the corresponding equation for a Newtonian
fluid [2]. This also demonstrates the validity of our
scheme for finding the solution of (36). In the next sec-
tion, the validity of the approximate solution is demon-
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Fig. 5. Streamlines for different values of α (= 0.05,0.2,0.5), (left) We = 1 and (right) We (= 0.3,1,2), α = 0.5. The other
parameters are F =−0.25 and ϕ = 0.4.
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strated by comparing it with the exact solution. Further,
the observations regarding the effects of dimensionless
parameters α and We on various features of peristaltic
motion such velocity, pressure rise per wavelength, and
trapping are also reported using the exact solution in
the next section.

5. Results and Discussion

A comparison of exact and approximate solution
of (36) is presented through Figure 2. One can observe
from panel (a) that the approximate solution is in ex-
cellent agreement with the exact solution for We = 1
and α = 0.3. However, as evident from panel (b), it
deviates slightly from the exact solution by increas-
ing We, i. e. We = 2. The deviation becomes promi-
nent for We = 3 (panel (c)) but still is in acceptable
range. Then, for α = 0.5 and We = 3, the approx-
imate solution is in total disagreement with the ex-
act solution (panel (d)). Thus it can be concluded that
for 0 ≤ α ≤ 0.5, We should be less than 1 for ac-
ceptable results. Test computations also confirm this
conclusion.

The variation of velocity u(y) at cross-section x = π

for different values of We and α is shown in Figure 3.
The curve for α = 0 or We = 0 in each panel of Fig-
ures 3 and 4 corresponds to a Newtonian fluid. Figure 3
reveals that We and α has same effects on the velocity
profile, i. e. it decreases for their large values. More-
over, one can see that the magnitude of velocity for the
Newtonian fluid is greater than for the Giesekus fluid.

One of the important features of peristaltic motion is
that it pumps a fluid against the pressure rise per wave-
length. To observe this feature, the pressure rise per
wavelength ∆p is plotted against the flow rate Θ in Fig-
ure 4 for different values of We and α . One can see
that the maximum pressure p0, i. e. the value of ∆p for
Θ = 0, decreases in going from Newtonian to Giesekus
fluid. Thus peristalsis has to work against a smaller

pressure rise for a Giesekus fluid in comparison to
a Newtonian fluid. However, the value of free pumping
flux Θ0, i. e. the value of Θ for ∆p = 0, is greater for
a Newtonian fluid as compared to a Giesekus fluid. It
is further noted from Figure 4 that an increase in the
value of We and α causes a decrease in p0 and Θ0.
Thus viscoelastic materials with larger relaxation time
can be propelled easily by the peristaltic mechanism.
Moreover, a rapid decrease in p0 and Θ0 is observed
by increasing We. On the other side with an increase in
α the decrease in p0 and Θ0 is slow.

The influence of We and α on the streamlines of the
flow is shown in Figure 5. The value of Θ is chosen
so that the center streamline ψ = 0 splits to enclose
a bolus of fluid which moves with the wave. An in-
spection of panels (a) – (c) reveals that size and circu-
lation of the trapped bolus decrease with an increase
in α . Similar observation can be made from panels
(d) – (f). But a rapid decrease in size and circulation of
the trapped bolus is observed by increasing We, and
the bolus disappears for large values of We as evident
from panel (f).

6. Concluding Remarks

The flow of a Giesekus fluid in a channel induced
by peristaltic waves is analyzed under long wavelength
and low Reynolds number assumptions. An exact as
well as approximate solution of the governing equa-
tion is constructed. Both the solutions are compared,
and a range of validity for the approximate solution is
provided. Effects of Giesekus fluid parameters We and
α on various features of the peristaltic motion are an-
alyzed. In nutshell, the velocity profile, pressure rise
per wavelength, and size and circulation of the trapped
bolus decrease by increasing We and α . We end up
with the remark that the present work may find appli-
cation in processes where the peristaltic transport of
polymeric fluids is involved.
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