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We study the scalar complex modified Korteweg–de Vries (cmKdV) equation by analyzing a sys-
tem of partial differential equations (PDEs) from the Lie symmetry point of view. These systems of
PDEs are obtained by decomposing the underlying cmKdV equation into real and imaginary com-
ponents. We derive the Lie point symmetry generators of the system of PDEs and classify them to
get the optimal system of one-dimensional subalgebras of the Lie symmetry algebra of the system
of PDEs. These subalgebras are then used to construct a number of symmetry reductions and exact
group invariant solutions to the system of PDEs. Finally, using the Lie symmetry approach, a couple
of new conservation laws are constructed. Subsequently, respective conserved quantities from their
respective conserved densities are computed.
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1. Introduction

In this paper, we study the exact solutions and con-
servation laws of the dimensionless form of the com-
plex modified Korteweg–de Vries (cmKdV) equation

qt + f0|q|2qx +g0qxxx = 0 , (1)

where q is the complex valued dependent variable, x, t
are the independent variables, and f0 and g0 are ar-
bitrary real valued non-zero constants. Equation (1)
arises in many areas of physics and mathematics, par-
ticularly in nonlinear optics and in the area of plasma
physics (see for e. g., [1 – 13]). Let us denote q(x, t) =
u(x, t)+ iv(x, t). The transformation

t̃ = g0t , x̃ = x , q̃ = q (2)

maps (1) to

q̃t + ã|q̃|2q̃x + q̃xxx = 0 , (3)

where ã = f0/g0. Therefore, without loss of generality,
we can consider the equations of the general form

qt +a|q|2qx +qxxx = 0 , (4)

where a is an arbitrary non-zero constant. By decom-
posing (4) into real and imaginary parts, we obtain
the following system of partial differential equations
(PDEs):

ut +a(u2 + v2)ux +uxxx = 0 ,

vt +a(u2 + v2)vx + vxxx = 0 .
(5)

Therefore, in the sequel, we will consider in our
analysis the system of PDEs (5) as all the results of
the system of equations (5) are equivalent to the class
of equations (4).

During the past four decades, the Lie symmetry
analysis has proved to be a powerful tool for solv-
ing nonlinear problems characterized by the differ-
ential equations arising in mathematics, physics, and
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in many other scientific fields of study. For the the-
ory and application of the Lie symmetry methods, see
e. g., [14 – 17].

Our aim in the present work is to obtain symme-
try reductions and exact solutions for the system of
PDEs (5) using the similarity transformations. These
similarity transformations are constructed by utilizing
the Lie point symmetry generators admitted by the sys-
tem of PDEs (5).

The outline of the paper is as follows. In Section 2,
we present the Lie point symmetries of the system of
PDEs (5), and in Section 3, we construct the optimal
system of one-dimensional subalgebras of the Lie sym-
metry algebra of the system of PDEs (5). Moreover,
using the optimal system of subalgebras, symmetry re-
ductions and exact group-invariant solutions of the sys-
tem of PDEs (5) are obtained. In Section 4, the method
of multipliers is used to obtain conserved quantities
for the cmKdV equation (1). Finally, in Section 5, con-
cluding remarks are made.

2. Lie Point Symmetries

In this section, we will derive the Lie point symme-
tries of the system of PDEs (5).

A vector field
X = τ(t,x,u,v)∂t +ξ (t,x,u,v)∂x

+η
1(t,x,u,v)∂u +η

2(t,x,u,v)∂v
(6)

is a generator of point symmetry of (5) if

X [3][ut +a(u2 + v2)ux +uxxx = 0
]
= 0 ,

X [3][vt +a(u2 + v2)vx + vxxx = 0
]
= 0

(7)

whenever the system of PDEs (5) is satisfied. Here the
operator X [3] is the third prolongation of the operator
X defined by

X [3] = X +ζ
1
1 ∂ut +ζ

1
2 ∂ux +ζ

2
1 ∂vt +ζ

2
2 ∂vx

+ζ
1
222∂uxxx +ζ

2
222∂vxxx

and the coefficients ζ i
j are given by the prolongation

formulae

ζ
1
1 = Dt(η1)−utDt(τ)−uxDt(ξ ) ,

ζ
1
2 = Dx(η1)−utDx(τ)−uxDx(ξ ) ,

ζ
2
1 = Dt(η2)− vtDt(τ)− vxDt(ξ ) ,

ζ
2
2 = Dx(η2)− vtDx(τ)− vxDx(ξ ) ,

ζ
1
222 = Dx(ζ 1

22)−uxxtDx(τ)−uxxxDx(ξ ) ,

ζ
2
222 = Dx(ζ 2

22)− vxxtDx(τ)− vxxxDx(ξ ) .

Here Dt and Dx are the total derivative operators de-
fined by

Dt = ∂t +ut∂u + vt∂v, . . . ,

Dx = ∂x +ux∂u + vx∂v, . . . .
(8)

The coefficient functions τ , ξ , η1, and η2 are calcu-
lated by solving the determining equation (7). Since
τ , ξ , η1, and η2 are independent of the derivatives of
u and v, the coefficients of like derivatives of u and v
in (7) can be equated to yield an over determined sys-
tem of linear PDEs. Solving the determining equation
for the infinitesimal coefficients τ , ξ , η1, and η2 in this
case is cumbersome, and after the lengthy calculations,
we obtain the following Lie point symmetries admitted
by the system of PDEs (5):

X1 = ∂t , X2 = ∂x , X3 =−v∂u +u∂v ,

X4 = 3t∂t + x∂x−u∂u− v∂v .
(9)

3. Symmetry Reductions and Exact
Group-Invariant Solutions of the System (5)

Here we first construct the optimal system of one-
dimensional subalgebras of the Lie algebra admitted
by the system of PDEs (5). The classification of the
one-dimensional subalgebras are then used to obtain
symmetry reductions and exact group invariant solu-
tions for the system of PDEs (5).

The results on the classification of the Lie point
symmetries (9) of the system of the PDEs (5) are sum-
marized in Tables 1, 2, and 3. The commutator table
of the Lie point symmetries of (5) and the adjoint rep-
resentations of the symmetry group of (5) on its Lie
algebra are given in Table 1 and Table 2, respectively.
The Table 1 and Table 2 are used to construct the op-
timal system of one-dimensional subalgebras for the
system of PDEs (5) which is given in Table 3 (for
more details of the approach see [16, and the references
therein]).

Table 1. Commutator table of the Lie algebra of (5).

X1 X2 X3 X4

X1 0 0 0 3X1
X2 0 0 0 X2
X3 0 0 0 0
X4 −3X1 −X2 0 0
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Table 2. Adjoint table of the Lie algebra of (5).

Ad X1 X2 X3 X4

X1 X1 X2 X3 X4−3εX1
X2 X1 X2 X3 X4− εX2
X3 X1 X2 X3 X4

X4 e3ε X1 eε X2 X3 X4

Case 1. In this case, the group-invariant solution cor-
responding to the symmetry generator X4 + λX3 re-
duces the system of PDEs (5) to the system of nonlin-
ear third-order ordinary differential equations (ODEs)

3A′′′+3a(A2 +B2)A′− γA′−A+λB = 0 ,

3B′′′+3a(A2 +B2)B′− γB′−B−λA = 0 .
(10)

Here ‘prime’ denotes differentiation with respect to γ .

Case 2. The group invariant solution arising from
X1 +ε1X2 reduces the system of PDEs (5) to the system
of nonlinear third-order ordinary differential equations
(ODEs)

A′′′+aA2A′+aB2A′− ε1A′ = 0 ,

B′′′+aB2B′+aA2B′− ε1B′ = 0 .
(11)

Here ‘prime’ denotes differentiation with respect to γ .

The system of the ODEs (11) is highly nonlinear,
however, if we set B =

√
a0, then solving the ODE (11)

by setting the constants of integration to zero, we ob-
tain the following solutions for A:

A =

√
6ε1

a
−6a0 sech

[√
ε1−aa0(x− ε1t)+δ

]
,

A =

√
3ε1

a
−3a0 tanh

[√
aa0− ε1

2
(x− ε1t)+δ

]
.

Hence we have the following solitary wave group in-
variant solutions for (4):

Table 3. Subalgebra, group invariants, group invariant solutions of (5).

N X γ Group-invariant solution

1 X4 +λX3 xt−1/3 u = t−1/3
[
A(γ)cos(λ/3ln t)+B(γ)sin(λ/3ln t)

]
v = t−1/3

[
A(γ)sin(λ/3ln t)−B(γ)cos(λ/3ln t)

]
2 X1 + ε1X2 x− ε1t u = A(γ), v = B(γ)
3 X2 + ε2X3 t u =±

[
−A(γ)sinx+B(γ)cosx

]
, v =

[
A(γ)cosx+B(γ)sinx

]
4 X1 +δX3 + ε2X2 x− ε3t u = δ

[
−A(γ)sin t +B(γ)cos t

]
, v =

[
A(γ)cos t +B(γ)sin t

]
5 X3 N/A N/A

Here εi = 0,±1, i = 1, . . . ,3, δ =±1, and λ is an arbitrary real constant.

q =

√
6ε1

a
−6a0 sech

[√
ε1−aa0(x− ε1t)+δ

]
+ ia0 ,

q(x, t) =

√
3ε1

a
−3a0 tanh

[√
aa0− ε1

2
(x− ε1t)+δ

]
+ ia0 .

Case 3. The group invariant solution that corresponds
to X2 +ε2X3 reduces the system of PDEs (5) to the sys-
tem of nonlinear first-order ODEs

A′+(aA2 +aB2)B−B = 0 ,

B′− (aA2 +aB2)A+A = 0 .
(12)

Here ‘prime’ means differentiation with respect to γ .
The system of ODEs (12) has the particular solutions
A = eiγ and B = i eiγ . Thus we have the following
group invariant solutions for (5):

u(x, t) =±
[
− sin(t + x)+ cos(t + x)

]
,

v(x, t) =
[

cos(t + x)+ sin(t + x)
]
.

Hence the group invariant solution of (4) is

q(x, t) =±
[
− sin(t + x)+ cos(t + x)

]
+ i
[

cos(t + x)+ sin(t + x)
]
.

If ε2 = 0, then the symmetry generator X2 gives rise to
the trivial constant solutions of the system of PDEs (5),
that is, u(x, t) = u0 and v(x, t) = v0.

Case 4. The X1 + δX3 + ε3X1-invariant solution re-
duces the system of PDEs (5) to the system of nonlin-
ear third-order ordinary differential equations (ODEs)

A′′′+aA2A′+aB2A′− ε3A′+B = 0 ,

B′′′+aB2B′+aA2B′− ε3B′−A = 0 .
(13)

Here ‘prime’ denotes differentiation with respect to γ .

Case 5. The symmetry generator X3 does not give
a group invariant solution.
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4. Conservation Laws

In this section, the method of multipliers is going
to be also used to obtain a few conserved densities of
the cmKdV equation (1) in which we use a = f0 and
b = g0 for simplicity.

4.1. Method of Multipliers

In order to evaluate conserved quantities, we re-
sort to the invariance and multiplier approach based on
the well-known result that the Euler–Lagrange oper-
ator annihilates a total divergence. Firstly, if (T t ,T x)
is a conserved vector corresponding to a conservation
law, then

DtT
t +DxT x = 0

along the solutions of the differential equation (de =
0).

Moreover, if there exists a non-trivial differential
function Q, called a ‘multiplier’, such that

Eq[Q · (de)] = 0 ,

then

Q · (de) = DtT
t +DxT x ,

where Eq is the Euler–Lagrange operator for some
(conserved) vector (T t ,T x). Thus, a knowledge of each
multiplier Q leads to a conserved vector determined by,
inter alia, a homotopy operator. See details and refer-
ences in [18].

For a system de1 = 0 , de2 = 0, Q = ( f ,g), say, so
that

f · (de1)+g · (de2) = DtT
t +DxT x

and

E(u,v)
[
DtT

t +DxT x]= 0 .

Here, either T t or T x is the conserved density.
For the system of PDEs which is derived by decom-

posing (1) into real and imaginary parts, that is,

ut +a(u2 + v2)ux +buxxx = 0 ,

vt +a(u2 + v2)vx +bvxxx = 0 ,
(14)

we obtained, inter alia, the higher-order multipliers

(i) ( f ,g) =
(1

b

(
buxx +

1
3

au(u2 + v2)
)

,

1
b

(
−a

3
v(u2 + v2)−bvxx

))
and

(ii) ( f ,g) =
(1

b

(
bvxxx +avx(u2 + v2)

)
,

1
b

(
−aux(u2 + v2)−buxxx

))
which, for the system

qt +a|q|2qx +bqxxx = 0 , (15)

lead to, respectively,

Q1 =
a
12
|q|4 +

b
4

(qq∗xx +q∗qxx) and

Q2 =− i
4

[a
2
|q|2 (q∗qx−qq∗x)+b(q∗qxxx−qq∗xxx)

]
.

4.2. Conserved Quantities

In this subsection, the one-soliton solution that was
obtained in [19, 20] will be used to compute the con-
served quantities. To recall, the one-soliton solution
to (15) is given by

q(x, t) = Asech
[
B(x− vt)

]
ei(−κx+ωt+θ) , (16)

where the amplitude(A)–width(B) relation is given by

B = A

√
a

6b
, (17)

and the wave number (ω) is

ω = bκ
(
3B2−κ

2) , (18)

while the relation between the soliton velicity (v) and
the soliton frequency (κ) is

v = b
(
B2−3κ

2) . (19)

Using the one-soliton solution, the conserved quanti-
ties, from Q1 and Q2 above, are [20]

I1 =
∫

∞

−∞

Q1 dx

=
∫

∞

−∞

{ a
12
|q|4 +

b
4

(
qq∗xx +q∗qxx

)}
dx

=
A2

9B

{
aA2−3b

(
3κ

2 +5B2)}
(20)

and
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I2 =
∫

∞

−∞

Q2 dx

=− i
4

∫
∞

−∞

{a
2
|q|2
(
q∗qx−qq∗x

)
+b
(
q∗qxxx−qq∗xxx

)}
dx

=−κA2

3B

{
aA2−3B

(
κ +B2)} .

(21)

5. Conclusions

In this paper, we have studied the scalar complex
modified Korteweg–de Vries (cmKdV) equation by in-
vestigating a system of PDEs using the Lie symmetry

group method. The system of PDEs is obtained by de-
composing the underlying cmKdV equation into real
and imaginary components. We derived the Lie point
symmetry generators of the system of PDEs. By clas-
sifying these Lie point symmetry generators, we ob-
tained the optimal system of one-dimensional subal-
gebras of the Lie symmetry algebra of the system of
PDEs. We then used these optimal system of subalge-
bras to construct a number of symmetry reductions and
exact group invariant solutions to the system of PDEs.
The Lie symmetry method is also employed to extract
a couple of conserved densities, and the corresponding
conserved quantities are also computed.
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