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This problem deals with the theoretical study of unsteady blood flow of a Jeffery fluid. Two types
of arteries, namely (i) composite stenosed artery and (ii) anistropically tapered stenosed artery with
permeable walls are considered. The highly nonlinear momentum equations of the Jeffery fluid model
are simplified by considering the case of mild stenosis, and finally the exact solutions are found.
The expressions for velocity, flow impedance, pressure rise, and stream function are computed and
discussed through graphs for different physical quantities of interest.

Key words: Unsteady Flow; Jeffery Fluid; Blood Flow; Permeable Walls; Stenosed Arteries; Exact
Solutions.

1. Introduction

A stenosis is an abnormal narrowing in a blood ves-
sel or other tabular organ or structure. It is also some
times called a stricture. Most of the times these steno-
sis cause death when the degree of narrowing becomes
significant enough to impede the flow of blood. Due
to stenosis in the human artery, the flow of blood
is disturbed and resistance to flow becomes higher
than that of normal one. The main cause of forma-
tion of such stenosis is not yet known clearly but
their consequences can be recognized easily. The im-
portant contribution of recent years to the topic are
referred in [1 – 6]. Many researchers in the field of
arteriosclerotic development indicate that the studies
are mainly concerned with single symmetric and non-
symmetric stenosis. Some stenosis may develop in se-
ries or may be of irregular shapes or are overlapping
or of composite in nature. Ismail et al. [7] studied the
power law model of blood flow through an overlap-
ping stenosed artery where an improved shape of the
time variant stenosed in the tapered arterial lumen is
given.

In a number of papers, Mekheimer and El
Kot [8 – 11] have discussed the different aspects
of blood flow analysis in stenosed arteries. The blood

flow analysis for different non-Newtonian fluid models
have been examined by Akbar and Nadeem [12 – 16].
Very recently, Mishra and Siddiqui [17] have studied
the blood flow through a composite stenosis in an
artery with permeable wall. Sinha and Misra discussed
the influence of slip velocity on the blood flow through
an artery with permeable wall [18]. However, the
blood flow of a Jeffery fluid through stenosed arteries
with permeable walls is not explored sofar.

The aim of the present paper is to see the effects
of permeable walls along with slip on the blood flow
of the Jeffery fluid model through stenosed arteries for
two types of arterial shapes called composite stenosed
artery and anistropically tapered stenosed artery. The
flow in the permeable boundary is described by the
Darcy law which states that the rate at which fluids
flow through a permeable substance per unit area is
equal to the permeability times the pressure drop per
unit length of flow, divided by the viscosity of the
flow [17]. Because of the permeability at the wall,
slip effects are also taken into account. The governing
equations of a Jeffery fluid are presented. The highly
nonlinear partial differential equations are simplified
by considering the observations of mild stenosis. The
exact solutions are carried out subject to the bound-
ary conditions of blood flow for two types of geome-
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tries with a permeable wall. The physical features of
the major parameters have been discussed through the
graphs.

2. Geometry of the Problem

2.1. Composite Stenosed Artery

The geometry of the composite stenosis (see Fig. 1)
is assumed to be manifested in the arterial segment and
is described as

R(z)/R0 =



1− 2δ

R0L0
(z−d) , d < z≤ d +L0/2 ,

1− δ

2R0

(
1+ cos

2π

L0
(z−d−L0/2)

)
,

d +L0/2 < z≤ d +L0 ,

1 otherwise .

(1)

2.2. Anisotropically Tapered Stenosed Artery

The geometry of the anistropically tapered arteries
(see Fig. 2) with time dependant stenosis is defined by

R(z, t)/R0 =



(
mz+R0−

δ cosφ

L0
(z−d)

·
(

11− 94
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32
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0
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− 32

3L3
0
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))
,

d ≤ z≤ d +3L0/2 ,

(mz+1) otherwise ,

(2)

where R(z) and R(z, t) denote the steady and unsteady
radii of the arteries, R0 is the constant radius of the
normal artery in the non-stenotic region, φ is the angle
of tapering, and m = (tanφ) represents the slope of the
tapered vessel such as φ < 0 is for converging tapering,
φ = 0 is the non-tapered artery, and diverging artery is
for φ > 0.

3. Formulation of the Problem

Consider an incompressible Jeffrey fluid flow-
ing through a stenosed circular artery with perme-
able walls. We are considering cylindrical coordinates
(r,θ ,z) in such a way that the z-axis is taken along the
axis of the artery and r, θ are the radial and circumfer-
ential directions, respectively. Let r = 0 be considered

as the axis of the symmetry of the tube. Then the gov-
erning equations for the flow problem are defined as

∂v
∂ r

+
v
r

+
∂u
∂ z

= 0 , (3)
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(4)

ρ

(
∂v
∂ t

+u
∂v
∂ z

+ v
∂v
∂ r

)
=−∂ p

∂ r
+

1
r

∂

∂ r
(rSrr)

+
∂

∂ z
(Srz) ,

(5)

where
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Introducing non-dimensional variables
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Using the above non-dimensional variables, then
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where Re = ρU0R0/µ is the Reynolds number. Under
the assumption of low Reynolds number for mild
stenosis, with additional condition ε = R0

L0
= o(1), the

non-dimensional problem is given by

∂ p
∂ r

= 0 , (12)

∂ p
∂ z

=
1
r

∂

∂ r

(
r

1+λ1

(
∂u
∂ r

))
. (13)

4. Solution of the Problem

4.1. Composite Stenosed Artery

The non-dimensional expression of (1) reads

R(z) =


1−2δ (z−d) for d < z≤ d +1/2 ,

1− δ

2
(1+ cos2π(z−d−1/2))

for d +1/2 < z≤ d +1 ,

1 otherwise .

(14)

The integration of (13) yields

u =
(

∂ p
∂ z

)
(1+λ1)

2
r2− (1+λ1)C1 loge r +C2 . (15)

Incorporating the non-dimensional boundary condi-
tions

∂u
∂ r

= 0 at r = 0 , (16)

u = uB and
∂u
∂ r

=
α√
Da

(uB−uporous)

at r = R(z) ,
(17)

we arrive at

u =
∂ p
∂ z

(1+λ1)
4

(r2−R2(z))+uB , (18)

where uB is the slip velocity and is given by
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(
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√
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2α
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)
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The solution in terms of the stream function is given
by

Ψ =
1
16

r2
(

8uB +
∂ p
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(r2−2u2)(1+λ1)
)

. (20)

The volumetric flow flux Q is thus calculated as

Q = 2
∫ R(z)

0
rudr (21)

or

Q =−∂ p
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where
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Finally, we get
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4.2. Anisotropically Tapered Stenosed Artery

The non-dimensional expression of (2) reads

R(z, t) =



(
(mz+R0)−δ cosφ(z−d)
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3
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3
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Corresponding boundary conditions are

∂u
∂ r

= 0 at r = 0 , (30)

u = uB and
∂u
∂ r

=
α√
Da

(uB−uporous)

at r = R(z, t) ,
(31)

where uporous = −Da ∂ p
∂ z , uporous is the velocity in the

permeable boundary, Da is the Darcy number, and α



492 R. Ellahi et al. · Analytical Solutions of Unsteady Blood Flow of Jeffery Fluid Through Stenosed Arteries

(called the slip parameter) is a dimensionless quantity
depending on the material parameters which character-
ize the structure of the permeable material within the
boundary region. We arrive at

u =
∂ p
∂ z

(1+λ1)
4

(
r2−R2(z, t)

)
+uB , (32)

where uB is slip velocity and is given by

uB =−∂ p
∂ z

(
Da+

√
Da

2α
(1+λ1)R(z, t)

)
. (33)

The volumetric flow flux Q is thus calculated as

Q = 2
∫ R(z,t)

0
rudr (34)

or

Q =−∂ p
∂ z

F(z, t) , (35)

λ =
∫ L

0
G(z, t)dz . (36)

Fig. 1. Geometry of the problem for composite stenosed
artery.

Fig. 2. Geometry of the problem for anistropically tapered
stenosed artery.

Over the tapered arterial domain, the expression for the
impedance will finally be

λ =
∫ d

0
G(z, t)dz+

∫ d+3/2

d
G(z, t)dz

+
∫ L

d+3/2
G(z, t)dz .

(37)

5. Discussion

5.1. Composite Stenosed Artery

To observe the quantitative effects of the Jeffrey
parameter λ1 and other various parameters on flow
impedance λ , we have sketched a number of graphs.
In Figure 3, the flow impedance λ is plotted against
the slip parameter α for composite stenosed arteries. It
is observed that by increasing Jeffrey parameter λ1 and
Darcy number

√
Da, the impedance λ decreases while

an increase in stenosis height δ results in an increase

Fig. 3. Variation of resistance to flow λ with α .

Fig. 4. Variation of resistance to flow λ with
√

Da.
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Fig. 5. Variation of resistance to flow λ with time δ .

Fig. 6. Variation of resistance to flow λ with λ1.

Fig. 7. Variation of resistance to flow λ with α .

of the impedance λ . It is also noticed that
√

Da plays
an inverse role against impedance λ . Figure 4 is the
profile of λ against

√
Da for various values of steno-

sis height δ and slip parameter α . It shows that the
impedance λ increases by increasing slip parameter α .

Fig. 8. Variation of resistance to flow λ with
√

Da.

Fig. 9. Variation of resistance to flow λ with time δ .

Fig. 10. Variation of resistance to flow λ with λ1.

The effects of the length of the artery L with the posi-
tion of stenosis d and Jeffrey parameter λ1 on the flow
impedance λ are discussed in Figure 5. It is observed
that by increasing L, the impedance λ decreases. The
effects of λ1 are same as observed before. Figure 6
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Fig. 11. Streamlines for various values of δ : (a) δ = 0.1, (b) δ = 0.2, (c) δ = 0.3.
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Fig. 12. Streamlines for various values of
√

Da: (a)
√

Da = 0.1, (b)
√

Da = 0.2, (c)
√

Da = 0.3.
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Fig. 13. Streamlines for various values of α: (a) α = 0.1, (b) α = 0.2, (c) α = 0.3.
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Fig. 14. Streamlines for various values of λ1: (a) λ1 = 0.01, (b) λ1 = 0.1, (c) λ1 = 10.
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describes the impedance profile of λ against Jeffrey pa-
rameter λ1. Again it is clear that an increase in the slip
parameter α results an increase in impedance λ .

5.2. Anisotropically Tapered Stenosed Artery

In order to observe the effects of the Jeffrey pa-
rameter λ1 along with all other parameters on flow
impedance λ to the blood flow through anistropically
tapered stenosed arteries, we have drawn graphs 7 – 12.
The effects of tapering angle φ is discussed in all pro-
files with the respective parameters. In Figure 7, the
flow impedance λ is plotted against the slip parameter
α for tapered stenosed arteries. It is observed that by
increasing Darcy number

√
Da, the impedance λ de-

creases while an increase in stenosis height δ results
in an increase of the impedance λ . Figure 8 describes
how λ is related to

√
Da under the effects of δ and

α . One can easily observe that the impedance λ is di-
rectly proportional to the stenosis height δ and the slip
parameter α . The effects of Darcy number

√
Da on the

flow impedance λ are discussed in Figure 9, and one
notices that

√
Da has the same role as we have ob-

served in previous cases. Figure 10 describes the pro-
files of impedance λ against Jeffrey parameter λ1. It
is clear that an increase of the slip parameter α re-
sults in an increase of impedance λ . The streamlines
for converging, diverging, and non-tapered arteries are

also plotted against these parameters. It is depicted that
the maximum number of trapping bolus are offered by
the diverging artery while a converging artery shows
the least number of trapping bolus. By increasing the
stenosis height δ and the slip parameter α , the number
of bolus decreases (see Figs. 8 and 10). An increase in
Darcy number

√
Da and Jeffrey parameter λ1 results in

a decrease of the number of bolus (see Figs. 9 and 11).

6. Conclusion

In the present study, the mathematical and graphi-
cal results of blood flow of a Jeffery fluid in a stenosed
artery are discussed. Two types of arteries, namely (i)
composite stenosed artery and (ii) anistropically ta-
pered stenosed artery with permeable walls are con-
sidered. The governing equations are simplified by
employing mild stenosis and low Reynolds number
approximations. The exact solutions of the resulting
equations are found out. The following main results are
observed:
• By increasing δ and α , the impedance λ increases.
• Impedance λ decreases by increasing λ1 and

√
Da.

• Maximum impedance is offered by converging ar-
teries while the diverging arteries offer a minimum.

• Maximum number of trapping bolus are offered by
the diverging arteries while the converging arteries
show the least number of trapping bolus.
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