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The electron streaming and resonance effects on the non-stationary Karpman–Washimi nonlinear
ponderomotive magnetization and radiated power are investigated in a quantum plasma. The pon-
deromotive Karpman–Washimi magnetization and radiation power due to the ponderomotive force
are obtained as functions of the electron streaming velocity, Fermi velocity, wave frequency, and
wave number. In small wave numbers, it is found that the electron streaming effect enhances the
Karpman–Washimi ponderomotive magnetization. It is found that the electron streaming effect shifts
the resonant wave number to the smaller wave number domain. It is also found that the quantum
effect reduces the electron streaming velocity for the ponderomotive magnetization near the resonant
wave number. In addition, the wave frequency for the resonant Karpman–Washimi radiated power is
found to be increased with increasing wave number.
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1. Introduction

Recently, there has been a great interest in various
physical processes in dense quantum plasmas [1 – 7]
composed of low-temperature and high-density elec-
trons and ions since the quantum plasmas have been
found in modern sciences and technologies such
as laser-produced plasmas, nano-electronic devices,
quantum dots, quantum wells, and semiconductor de-
vices and as well as in various dense astrophysical sys-
tems such as the compact objects, i. e., white dwarfs
and neutron stars. Since the Langmuir oscillations in
quantum plasmas has been found to be propagated due
to the quantum effect caused by the Bohm potential
term [8], the physical properties of quantum plasmas
have been extensively investigated using the linearized
quantum hydrodynamic equation including the influ-
ence of the Bohm effect [9]. It has been known that
the ponderomotive force in plasmas would be either
caused by the inhomogeneity of the plasma medium
or by the inhomogeneity of the field configuration. It
is also shown that the spectral information on plasma
parameters can be obtained by the spatial and tem-

poral ponderomotive forces which are proportional to
the intensity of the field amplitude in plasmas. Fur-
ther, it is found that the Karpman–Washimi procedure
is one of the main mechanisms for the generation of
the slowly varying magnetic field by the ponderomo-
tive force in laser heating of plasmas [10]. Since then,
the propagation and trapping of the wave in plasmas
have been extensively explored by using the nonlin-
ear Karpman–Washimi ponderomotive interaction be-
tween the electromagnetic wave and the plasma sys-
tem [11 – 17]. The stability of the plasma system en-
compassing the streaming charge component has been
considerably investigated in various plasmas [18]. Very
recently, the dispersion property for a streaming quan-
tum plasma has been obtained by the Fermi–Dirac dis-
tribution with the appropriate Doppler shift [19, 20].
Hence, the Karpman–Washimi ponderomotive magne-
tization and radiation power in a streaming quantum
plasma would be quite different from those in a sta-
tionary quantum plasma. However, the physical prop-
erty of the Karpman–Washimi ponderomotive magne-
tization and radiation power in a streaming quantum
plasma caused by the time-variation of the field in-
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tensity has not been investigated as yet. Thus, in this
paper, we have investigated the influence of the elec-
tron streaming and resonance on the non-stationary
Karpman–Washimi ponderomotive magnetization in
a cold streaming quantum plasma with the appropriate
Doppler shift.

In Section 2, we discuss the Karpman–Washimi pro-
cedure due to the ponderomotive interaction. In Sec-
tion 3, we obtain the ponderomotive magnetization and
radiated power in a streaming quantum plasmas and
also discuss the dispersion property of the quantum
plasma. In Section 4, we obtain the influence of the
streaming and resonant phenomena on the pondero-
motive Karpman–Washimi magnetization and radiated
power. Finally, the conclusion is given in Section 5.

2. Karpman–Washimi Mechanism

In the Karpman–Washimi mechanism [10, 11],
the total ponderomotive force FTot,P(r, t) of
the electromagnetic field E(r, t)

{
= (1/2)[

E0(r, t)e−i(ω(k)t−k·r) + E∗0 (r, t)ei(ω(k)t−k·r)]} inter-
acting with unmagnetized plasmas would be repre-
sented by the following form:

FTot,P(r, t) = Fs,P(r, t)+Ft,P(r, t) , (1)

where E(r, t) represents the envelope of the electro-
magnetic wave at the position r and time t, k is the
wave vector, and ω(k) is the frequency of the wave
propagating in the plasma medium. The notation ‘∗’
stands for the complex conjugate. Here, Fs,P(r, t) and
Ft,P(r, t) are, respectively, the ponderomotive forces
related to the space-variation of the electromagnetic
field, i. e., ∇ |E0(r, t)|2:

Fs,P(r, t) =
1

16π

[
ε(ω,k)−1

]
∇
∣∣E0(r, t)

∣∣2 , (2)

and the time-variation of |E0(r, t)|2:

Ft,P(r, t) =
1

16π

∂

ω2∂ω

[
ω

2(ε(ω,k)−1)
]

· ∂

∂ t

[
k
∣∣E0(r, t)

∣∣2] , (3)

where ε(ω,k) is the permittivity of the plasma system.
The slowly varying electric field ES(r, t)(= FTot,P/n0e)
balanced by the total ponderomotive force per unit vol-
ume FTot,P(r, t) would be then obtained by the force
balance condition [11]:

ES(r, t) =
1

16πn0e

{
∇

[
(ε(ω,k)−1) |E(r, t)|2

]
+

1
c

∂

∂ t

[
∂

ω2∂ω

·
(
ω

2(ε(ω,k)−1)
)

k |E(r, t)|2
]}

,

(4)

where n0 is the average electron density, e is the mag-
nitude of the electron charge, and c is the speed of
light. Since the curl of Fs,P(r, t) is zero, the nonlin-

ear field [21] part ENL

{
∝ ∇

[
(ε − 1) |E|2

]}
in the

first term on the right-hand side of (4) would be con-
servative in a plasma. Hence, the corresponding pon-
deromotive vector potential AP(r, t) and ponderomo-
tive magnetic field BP(r, t) generated by the current
of the direction k would be obtained by the following
forms:

AP(r, t) =− 1
16πn0e

k
∣∣E0(r, t)

∣∣2 ∂

ω2∂ω

·
[
ω

2(ε(ω,k)−1)
]
,

(5)

BP(r, t) =− 1
16πn0e

∂

ω2∂ω

[
ω

2(ε(ω,k)−1)
]

·∇×
[
k |E0(r, t)|2

]
.

(6)

3. Magnetization in Streaming Quantum Plasmas

In recent years, quantum plasmas have been usu-
ally explored by the Wigner–Poisson and Schrödinger–
Poisson equations in the mean-field formulations with
suitable boundary and initial conditions [20]. Recently,
the plasma permittivity function [19, 20] εq(ω,k)
in unmagnetized quantum plasmas composed of the
streaming electrons and the motionless ions including
the quantum density fluctuations caused by the Bohm
potential term as well as the Fermi pressure effect has
been obtained by using the quantum hydrodynamic
model:

εq(ω,k) = 1−
ω2

pe

(ω− k ·U0)2− k2V 2
F − h̄2k4/4m2

e

, (7)

since the frequency ω ′ in a frame of reference moving
with the streaming electrons is replaced by ω ′ = ω −
k ·U0, i. e., the Doppler shift, where U0 is the stream-
ing velocity of the electrons, ωpe[= (4πnee2/me)1/2]
is the electron plasma frequency, ne is the electron
number density, me is the mass of the electron, VF[=
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(2kBTF/me)1/2] is the electron Fermi velocity, kB is
the Boltzmann constant, TF is the electron Fermi tem-
perature, h̄ is the rationalized Planck constant, and the
term proportional to h̄2 stands for the electron quan-
tum diffraction effect. In magnetized plasmas, the time
derivatives of the field amplitude should be taken into
account. Then, we consider the time derivatives of
the field as ∂ |E0|2 /∂ t ∼ |E0|2 /L, where L stands for
the typical scale length of |E0|2. Hence, the strength
of the Karpman–Washimi ponderomotive magnetic
field BKW in a streaming quantum plasma is found
to be

BKW(ω,k,U0,VF) =
c

8πn0e

(
ω

2
pe

[
h̄2k4

4m2
e
− k2(U2

0 −V 2
F )

+ kU0ω

])([
(ω− kU0)2

− k2V 2
F −

h̄2k4

4m2
e

])−2 k
L
|E0|2 .

(8)

As shown, the streaming effects on the Karpman–
Washimi ponderomotive magnetic field BKW are ex-
plicitly indicated in (8). Then, the induced cyclotron
frequency ω̄ ind(≡ ω ind/ωpe) associated with the in-
duced Karpman–Washimi magnetic field BKW due to
the non-stationary ponderomotive interaction related
to the time-variation of the intensity of the field in
a streaming quantum plasma is obtained by

ω̄ ind(ω̄, k̄,Ū0,V̄F) =
ωpe

8πmen0ω

[
h̄2k4

4m2
e
− k2(U2

0 −V 2
F )

+ kU0ω

][
(ω− kU0)2

− k2V 2
F −

h̄2k4

4m2
e

]−2 k
L
|E0|2

= MKW(ω̄, k̄,Ū0,V̄F)
ū2

0λ

π2L
,

(9)

where ω̄(≡ ω/ωpe) is the scaled wave frequency
in units of ωpe, k̄(≡ kλq) is the scaled wave num-
ber, λq[= (h̄2/4m2ω2

pe)
1/4] is the electron quantum

wavelength, Ū0(≡ U0/ωpeλq) is the scaled streaming
velocity, V̄F(≡ VF/ωpeλq) is the scaled electron Fermi
velocity, λ is the wave lenght, and MKW(ω̄, k̄,Ū0,V̄F)
represents the Karpman–Washimi ponderomotive
magnetization in a frame of reference moving with the
streaming electrons:

MKW(ω̄, k̄,Ū0,V̄F) =
π

4

(
k̄2[k̄4− k̄2(Ū2

0 −V̄ 2
F )

+ k̄Ū0ω̄
])(

ω̄
[
(ω̄− k̄Ū0)2

− k̄2V̄ 2
F − k̄4]2)−1

,

(10)

ū0 ≡ e |E0|/meω2
peλq. As shown in this equation, the

streaming and resonant effects provide crucial influ-
ence on the induced magnetization in quantum plas-
mas. This expression of the Karpman–Washimi pon-
deromotive magnetization MKW(ω̄, k̄,Ū0,V̄F) would be
then the key parameter for investigating the phys-
ical characteristics of the quantum density fluctua-
tions in a streaming cold quantum plasma. In quan-
tum plasmas, when the density and temperature are
given by n0 = 3.2 ·1018 cm−3 and TF = 348 K, the
Fermi wave length λF[≡ (kBTF/2πn0e2)1/2] and stan-
dard Debye length λD are, respectively, given by λF =
5.0 ·10−8 cm and λD = 7.2 ·10−8 cm. For a cold quan-
tum plasma such as n0 = 3.2 ·1018 cm−3 and TF =
30 K, the Fermi wave length and Debye length are also
given by λF = 1.5 ·10−8 cm and λD = 2.1 ·10−8 cm.
Then, we have found that the Debye length is usually
greater than the Fermi wave length in quantum plas-
mas. Hence, the influence of the streaming electrons
on the Karpman–Washimi magnetization can be inves-
tigated by the variation of the resonant behaviour of
the ponderomotive magnetization function ∂MKW[≡
∂MKW(ω̄, k̄,Ū0,V̄F)/∂Ū0]:

∂MKW(ω̄, k̄,Ū0,V̄F) =
(

π k̄3(ω̄− k̄Ū0)
[
k̄4− k̄2(Ū2

0

−V̄ 2
F )+ k̄Ū0ω̄

])(
ω̄
[
(ω̄− k̄Ū0)2− k̄2V̄ 2

F − k̄4]3)−1

+
(

π k̄2(−2k̄2Ū2
0 + k̄ω̄)

)(
4ω̄
[
(ω̄− k̄Ū0)2

− k̄2V̄ 2
F − k̄4]2)−1

.

(11)

Since the electron Larmor process produces the cy-
clotron emission spectrum, the Karpman–Washimi
radiated power PKW(ω̄, k̄,Ū0,V̄F) due to the pondero-
motive interaction in a streaming quantum plasma is
represented by

PKW(ω̄, k̄,Ū0,V̄F) =
π4P0

27 (12)

·
k̄8
[
k̄4− k̄2(Ū2

0 −V̄ 2
F )+ k̄Ū0ω̄

]4
ω̄4
[
(ω̄− k̄Ū0)2− k̄2V̄ 2

F − k̄4
]8 ,

where P0 ≡ e2ū4
0r2

Lλ 4/3c3L4 and rL is the Larmor ra-
dius for the cyclotron motion.
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4. Streaming and Resonant Effects

It is interesting to note that the investigation
of the Karpman–Washimi ponderomotive magneti-
zation MKW(ω̄, k̄,Ū0,V̄F) is essential to explore the
physical consequences of the streaming and reso-
nant phenomena in quantum plasmas. Figure 1 shows
the Karpman–Washimi ponderomotive magnetization
MKW as a function of the scaled wave number k̄ for
various values of the scaled streaming electron veloc-
ity Ū0. As shown in this figure, the influence of the
electron streaming in cold quantum plasmas enhances
the ponderomotive magnetization MKW in small wave
numbers, i. e., MKW for Ū0/V̄F > 1 is greater than MKW
for Ū0/V̄F < 1. In the small wave number domain,
it is then expected that the Karpman–Washimi pon-
deromotive magnetizations in streaming quantum plas-
mas are always greater than those in stationary quan-
tum plasmas. Figure 2 shows the resonant behaviour
of the Karpman–Washimi ponderomotive magnetiza-
tion MKW as a function of the scaled wave number k̄
for various values of the scaled streaming electron ve-
locity Ū0. As it is seen, the streaming effect shifts the
resonant wave number of the Karpman–Washimi pon-
deromotive magnetization to the smaller wave num-
ber domain. It is interesting to note that the resonant
wave number of the Karpman–Washimi ponderomo-
tive magnetization for Ū0/V̄F = 1 is found to be smaller
than that for Ū0/V̄F < 1, i. e., almost stationary quan-
tum plasmas. Hence, it is also found that the quan-
tum effect plays an important role in the ponderomo-

Fig. 1 (colour online). Karpman–Washimi ponderomotive
magnetization MKW as a function of the scaled wave number
k̄ in the small wave number domain when ω̄ = 10. The solid
line represents the case of Ū0 = 2 and V̄F = 1, the dashed line
the case of Ū0 = 1 and V̄F = 1, and the dotted line the case of
Ū0 = 1 and V̄F = 2.

Fig. 2 (colour online). Resonant behaviour of the Karpman–
Washimi ponderomotive magnetization MKW as a function
of the scaled wave number k̄ when ω̄ = 10. The solid line
represents the case of Ū0 = 2 and V̄F = 1, the dashed line the
case of Ū0 = 1 and V̄F = 1, and the dotted line the case of
Ū0 = 1 and V̄F = 2.

tive magnetization in streaming quantum plasmas. Fig-
ure 3 represents the surface plot of the variation of the
ponderomotive magnetization ∂MKW near the resonant
wave number region as a function of the scaled stream-
ing electron velocity Ū0 and scaled electron Fermi ve-
locity V̄F. From this figure, it is found that the elec-
tron streaming velocity Ū0 for the resonant domain of
the ponderomotive magnetization decreases with an in-
crease of the electron Fermi velocity V̄F. Hence, we
have found that the quantum effect reduces the elec-
tron streaming velocity for the ponderomotive magne-

Fig. 3 (colour online). Surface plot of the variation of the
ponderomotive magnetization ∂MKW near the resonant wave
number region as a function of the scaled streaming elec-
tron velocity Ū0 and scaled electron Fermi velocity V̄F when
ω̄ = 10 and k̄ = 2.5.
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tization near the resonant wave number. Figure 4 rep-
resents the surface plot of the Karpman–Washimi ra-
diated power PKW due to the ponderomotive force in
a streaming quantum plasma as a function of the scaled
wave number k̄ and scaled wave frequency ω̄ . As we
can see in Figure 4, it is found that the wave frequency
for the resonant Karpman–Washimi radiated power in-
creases with an increase of the wave number. In addi-
tion, it is found that the relation for the wave number
and wave frequency shows a nonlinear character since
the radiated power PKW contains the electron quantum
diffraction effect k̄4, i. e., h̄2k4/4m2

e , in (12). Hence, the
influence of the electron streaming on the ponderomo-
tive magnetization in quantum plasmas would be ex-
pressed by the characteristic function F(ω̄, k̄,Ū0,V̄F):

F(ω̄, k̄,Ū0,V̄F) =

(
k̄4− k̄2(Ū2

0 −V̄ 2
F )+ k̄Ū0ω̄

k̄4 + k̄2V̄ 2
F

)4

·

(
ω̄2− k̄2V̄ 2

F − k̄4

(ω̄− k̄Ū0)2− k̄2V̄ 2
F − k̄4

)8

.

(13)

It has been also known that the non-ponderomotive
nonlinear force proportional to the plasma collision
frequency, i. e., the Stamper force [21], in addition
to the Karpman–Washimi ponderomotive force would
be caused by the electrodynamic interaction of the
electromagnetic wave with the plasma in a collisional
plasma. Recently, excellent investigations are given
for the ponderomotive acceleration of electrons and
self-focusing and self-channelling processes [22, 23].
Hence, the investigation of the Stamper force, pon-

Fig. 4 (colour online). Surface plot of the Karpman–Washimi
radiated power PKW as a function of the scaled wave number
k̄ and scaled wave frequency ω̄ when Ū0 = 2 and V̄F = 1.

deromotive acceleration, and self-focusing effects on
the radiated power in quantum plasmas will be treated
elsewhere. Very recently, excellent investigations [24,
25] on the ponderomotive acceleration of electrons by
a short laser pulse undergoing relativistic self-focusing
and the relativistic self-distortion of a Gaussian laser
pulse have been investigated in plasmas. Then, the in-
vestigation of the plasma screening effect on the pon-
deromotive acceleration in quantum plasmas will also
be treated elsewhere.

5. Conclusion

In this paper, we have investigated the influence
of the electron streaming and resonance on the non-
stationary Karpman–Washimi ponderomotive magne-
tization and radiated power in a streaming quantum
plasma. The induced Karpman–Washimi magnetiza-
tion and radiation power due to the ponderomotive
force are obtained as functions of the electron stream-
ing velocity, Fermi velocity, wave frequency, and wave
number. In this study, we have found that the electron
streaming effect enhances the Karpman–Washimi pon-
deromotive magnetization for small wave numbers. It
is also found that the electron streaming effect shifts
the resonant wave number to the smaller wave num-
ber domain and, however, the quantum effect reduces
the electron streaming velocity for the ponderomo-
tive magnetization near the resonant wave number.
In addition, we have found that the wave frequency
for the resonant Karpman–Washimi radiated power in-
creases with increasing wave number. Hence, from this
work, we have found that the streaming and resonant
effects play crucial roles in the Karpman–Washimi
ponderomotive magnetization and radiated power in
a streaming cold quantum plasma. In this work, we
can found that the Karpman–Washimi magnetization
for a quantum plasma with n0 = 3.2 ·1018 cm−3 and
TF = 348 K is found to be greater than that for
n0 = 3.2 ·1018 cm−3 and TF = 348 K due to the tem-
perature effects on the Karpman–Washimi pondero-
motive magnetization. Hence, it would be useful to
investigate the plasma temperature using the non-
stationary Karpman–Washimi magnetization proce-
dure in quantum plasmas. In addition, we can explore
the streaming velocity in quantum plasmas using the
Karpman–Washimi radiated power PKW(ω̄, k̄,Ū0,V̄F).
These results would provide useful information on
the Karpman–Washimi magnetization and radiated
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power due to the non-stationary ponderomotive inter-
action in streaming dense quantum plasmas contain-
ing low-temperature and high-density electrons and
ions.
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