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A modified mapping method is used to obtain variable separation solutions with two arbitrary func-
tions of the (2+1)-dimensional modified dispersive water-wave system. Based on the variable separa-
tion solution and by selecting appropriate functions, we discuss interaction behaviours among special
anti-solitons constructed by multi-valued functions. The analysis results exhibit that the interaction
behaviours among special anti-dromion, dromion-like anti-peakon, and dromion-like anti-semifoldon
are all non-completely elastic and phase shifts exist, while the interaction behaviour among dromion-
like anti-semifoldons is completely elastic and without phase shifts.
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1. Introduction

In recent decades, there has been noticeable pro-
gress in the study of the soliton theory. Many impor-
tant phenomena and dynamic processes, in almost all
branches of physics like the fluid dynamics, plasma
physics, field theory, nonlinear optics, and condensed
matter physics, etc., are governed by the nonlinear evo-
lution equations (NLEEs). Therefore constructing pos-
sible exact solutions [1 – 5] to a NLEE arising from the
field of mathematical physics is a popular topic, but
solving nonlinear physics problems is much more dif-
ficult than solving the linear ones.

In contrast with linear wave theory where one can
make use of the basic technique of Fourier analysis
and the variable separation approach (VSA), the cele-
brated inverse scattering transformation and VSA also
play an important role in the nonlinear domain. As
an important VSA, the multilinear variable separation
approach (MLVSA) has been established and exten-
sively applied to solve various NLEEs [6]. Along the
idea of MLVSA, the mapping method, which is usu-
ally used to search for travelling wave solutions, is ex-
tended to obtain variable separation solutions of vari-
ous NLEEs. The VSA based on the mapping method

was firstly presented by Zheng et al. [7] and devel-
oped into (1+1)-dimensional and (3+1)-dimensional
NLEEs [8]. Then many direct methods based on dif-
ferent mapping equations, including the extended tanh-
function method (ETM) [9, 10], the improved projec-
tive approach [11], the q-deformed hyperbolic func-
tions method [12], and the projective Ricatti equation
method (PREM) [13], were chosen to realize the vari-
able separation to nonlinear equations.

Many single-valued localized structures (dromions,
peakons, and compactons etc.) have been extensively
investigated [6 – 9, 11 – 13]. However, in the real nat-
ural phenomena, there exist very complicated folded
phenomena such as the folded protein [14], folded
brain and skin surfaces, and many other kinds of folded
biologic systems [15]. Moreover, semifolded structures
can also be realized. For example, ocean waves may
fold in one direction, say x, and localize in a usual sin-
gle valued way in another direction, say y. These spe-
cial localized structures can be constructed by multi-
valued functions. Of course, at the present stage, it
is impossible to make satisfactory analytic descrip-
tions for such complicated folded natural phenom-
ena. However, it is still worth starting with some sim-
pler cases. For example, some combined structures of
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dromions, peakons, and foldons and interaction among
them hardly are reported.

Now some significant and interesting issues arise:
Are there other mapping equations that can be used to
obtain variable separation solutions of some (2 + 1)-
dimensional nonlinear physical systems? Based on
these variable separation solutions, can we discuss
some new dynamical behaviours among some com-
bined structures of dromions, peakons, and foldons?
Motivated by these issues, we will report and dis-
cuss these phenomena in the following well-known
(2 + 1)-dimensional modified dispersive water-wave
(MDWW) system

uty +uxxy−2vxx− (u2)xy = 0 ,

vt − vxx−2(uv)x = 0 ,
(1)

which was used to model nonlinear and dispersive long
gravity waves travelling in two horizontal directions on
shallow waters of uniform depth. It may be derived
from the inner parameter-dependent symmetry con-
straint of the celebrated Kadomtsev–Petviashvili (KP)
equation [16]. It is worth mentioning that this system
has been widely applied in many branches of physics
like plasma physics, fluid dynamics, nonlinear optics,
etc. Therefore, a good understanding of more solutions
of the MDWW system (1) is very helpful, especially
for coastal and civil engineers to apply the nonlinear
water model in a harbour and coastal design. Abundant
propagating localized excitations were derived by Tang
et al. [6] with help of a Painlevé–Bäcklund transforma-
tion and a MLVSA. Folded localized excitations were
also revealed in [17]. Some soliton fusion and fission
phenomena of the MDWW system (1) have been dis-
cussed [13].

The paper is organized as follows. In Section 2, the
modified mapping method is presented. The variable
separation solution of a (2 + 1)-dimensional MDWW
is obtained in Section 3. In Section 4, completely and
non-completely elastic interaction phenomena among
special solions are investigated. A brief discussion and
summary is given in the last section.

2. The Modified Mapping Method

For a given NLEE with independent variables x =
(x0 = t,x1,x2,x3, . . . ,xm) and dependent variable u,

L(u,ut ,uxi ,uxix j , . . .) = 0 , (2)

where L is in general a polynomial function of its argu-
ment, and the subscripts denote the partial derivatives.

The basic idea of the mapping method is to seek for
its ansätz with positive and negative symmetric form

u = a0(x)+
n

∑
i=1

{
ai(x)φ i[q(x)]+a−i(x)φ−i[q(x)]

}
, (3)

where a0, ai, and a−i are arbitrary functions of {x}
to be determined, and n is fixed by balancing the lin-
ear term of the highest order with the nonlinear term
in (2), φ satisfying many mapping equations, such as
the Riccati equation φ ′ = l0 + φ 2 (l0 is a real constant
and the prime denotes differentiation with respect to
q) [9], φ ′ = σφ + φ 2 (σ is a real constant) [18], and
φ ′ = l1 + l2φ 2 (l1 and l2 are two real constants) [19].

Here we seek for its solution of the given NLEE (2)
with the following mapping equation [20]:

φ
′ = (Aφ −a)(Bφ −b) , (4)

which is known to possess the general solution

φ =
bexp[(aB−Ab)q]−aexp[C1(Ab−aB)]
Bexp[(aB−Ab)q]−Aexp[C1(Ab−aB)]

. (5)

Here C1 is an integration constant, further, A, B, a, and
b are arbitrary constants.

To determined u explicitly, we take following three
steps:

Step 1: Determine n by balancing the highest nonlin-
ear terms and the highest-order partial differ-
ential terms in the given NLEE (2).

Step 2: Substituting (3) along with (4) into (2) yields
a set of polynomials for φ i. Eliminating all the
coefficients of the powers of φ i, yields a series
of partial differential equations, from which
the parameters a0, ai, a−i, and q are explicitly
determined.

Step 3: Substituting a0, ai, a−i, q, and (5) into (3), one
can obtain possible solutions of (2).

Remark 1. It seems that the mapping equation (4)
is a new equation. However, when we re-define φ ≡
φ− Ab+aB

2AB and l0 =−A2b2+a2B2

A2B2 , (4) can be transformed
to the known mapping equation φ ′ = l0 + φ 2, which
possesses the following solutions [7, 8]
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φ =


−
√
−l0 tanh(

√
−l0q) for l0 < 0 ,

−
√
−l0 coth(

√
−l0q) for l0 < 0 ,√

l0 tan(
√

l0q) for l0 > 0 ,

−
√

l0 cot(
√

l0q) for l0 > 0 .

(6)

Remark 2. Although the mapping equation (4) can
be transformed to the known mapping equation, solu-
tion (5) contains solutions (6). When we choose C1 =
0, a = b =−

√
−l0, and −A = B =−1 in solution (5),

the first solution in (6) can be obtained. If one takes
C1 = 0, A = B = 1, and a =−b =

√
−l0 in solution (5),

the second solution in (6) can be derived. When one
selects C1 = 0, a = b = −I

√
l0, and −A = B = −1

in solution (5), the third solution in (6) can be re-
covered. Moreover, if we set C1 = 0, A = B = 1, and
a = −b = i

√
l0 in solution (5), the last solution in (6)

can be obtained. Therefore, solution (5) is more gen-
eral than solutions (6).

3. Variable Separation Solutions for the
(2+++1)-Dimensional MDWW Equation

To solve the (2 + 1)-dimensional MDWW system,
first, let us make a transformation for (1): v = uy. Sub-
stituting the transformation into (1) yields

uty−2(uxu)y−uxxy = 0 . (7)

Along with the modified mapping method in Sec-
tion 2, by balancing the higher-order derivative terms
with the nonlinear terms in (7), we suppose that (7)
has the following formal solutions:

u(x,y, t) = a0(x,y, t)+a1(x,y, t)φ(q)

+
a−1(x,y, t)

φ(q)
,

(8)

where φ satisfies (5) and q ≡ q(x,y, t). Here we select
the variable separation ansätz [13]

q = χ(x, t)+ψ(y) , (9)

which implies that two spatial variable x and y are sepa-
ratedcompletely. Inserting(8)with(9) into(7),andelim-
inating all the coefficients of the powers of φ i, one gets
a set of partial differential equations. It is very difficult
to solve these prolix and complicated differential equa-
tions. Fortunately, by careful analysis and calculation,
we derive two special solutions, namely Solution 1

a0 =
(Ab+aB)χ2

x −χxx + χt

2χx
,

a1 =−ABχx , a−1 = 0 ,

(10)

and Solution 2

a0 =
χt −χxx

2χx
, a1 =−ABχx ,

a−1 = abχx , Ab+aB = 0 ,
(11)

where χ and ψ are arbitrary functions of {x, t} and {y},
respectively.

Therefore, the variable separation solutions of the
(2+1)-dimensional WDMM system read

u =
(Ab+aB)χ2

x −χxx + χt

2χx
−ABχx (12)

·
bexp

[
(aB−Ab)(χ+ψ)

]
−aexp

[
C1(Ab−aB)

]
Bexp

[
(aB−Ab)(χ+ψ)

]
−Aexp

[
C1(Ab−aB)

] ,

v =−abABχxψy +(Ab+aB)ABχxψy (13)

·
bexp

[
(aB−Ab)(χ+ψ)

]
−aexp

[
C1(Ab−aB)

]
Bexp

[
(aB−Ab)(χ+ψ)

]
−Aexp

[
C1(Ab−aB)

]
−A2B2

χxψy bexp
[
(aB−Ab)(χ+ψ)

]
−aexp

[
C1(Ab−aB)

]
Bexp

[
(aB−Ab)(χ+ψ)

]
−Aexp

[
C1(Ab−aB)

]


2

,

and

u =
χt −χxx

2χx
−Abχx (14)

·
Aexp

[
2AbC1

]
+Bexp

[
−2Ab(χ +ψ)

]
Aexp

[
2AbC1

]
−Bexp

[
−2Ab(χ +ψ)

] +abχx

·
b
{

Aexp
[
2AbC1

]
−Bexp

[
−2Ab(χ +ψ)

]}
B
{

Aexp
[
2AbC1

]
+Bexp

[
−2Ab(χ +ψ)

]} ,

v = 2A2b2Bχxψy

(
exp
[
−2Ab(χ +ψ)

])
(15)

·
(

Aexp
[
2AbC1

]
−Bexp

[
−2Ab(χ +ψ)

])−1

−2A2b2Bχxψy

(
exp
[
−2Ab(χ +ψ)

]{
Aexp

[
2AbC1

]
+Bexp

[
−2Ab(χ +ψ)

]})({
Aexp

[
2AbC1

]
−Bexp

[
−2Ab(χ +ψ)

]})−2
−2abAB2

χxψy
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·
exp
[
−2Ab(χ +ψ)

]
Aexp

[
2AbC1

]
+Bexp

[
−2Ab(χ +ψ)

]
−2abAB2

χxψy

(
exp
[
−2Ab(χ +ψ)

]{
Aexp

[
2AbC1

]
−Bexp

[
−2Ab(χ +ψ)

]})({
Aexp

[
2AbC1

]
+Bexp

[
−2Ab(χ +ψ)

]})−2
,

where χ(x, t) and ψ(y) are two arbitrary variable sep-
aration functions.

4. Interaction Behaviours Among Special Solitons

(2 + 1)-dimensional MDWW system models non-
linear and dispersive long gravity waves travelling in
two horizontal directions on shallow waters of uni-
form depth. Single-valued line solitons used to ana-
lyze nonlinear and dispersive long gravity waves trav-
elling in two horizontal directions. For example, we
can use them to describe roughly the bubbles on (or
under) a fluid surface. However, these waves are folded
or semi-folded waves, and it is too complicated to use
only single-valued functions to analyze the dynamical
behaviours of water waves. More precisely, we can use
multi-valued functions to describe them because multi-
valued functions can construct folded or semi-folded
structures (foldons or semi-foldons) [9].

In this section, we will pay attention to interac-
tion behaviours between semi-foldons for the phys-
ical quantity v expressed by (15). Here we use
symbolic computation software MAPLE to study
these behaviours. Firstly, we discuss the three spe-
cial combined soliton structures, i. e. special anti-
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Fig. 1. Sectional views of special solitons at (a) x = 0 and (b) y = 0 for parameters A =−2, B = C1 = 1, a = 0.5, b = 0.25 at
time t = 15.

dromion, dromion-like anti-peakon, dromion-like anti-
semifoldon by introducing a multi-valued function as

χx =
N

∑
i=1

κi(ζ −dit) , x = ζ +
N

∑
i=1

ηi(ζ −dit) , (16)

where di (i = 1,2, . . . ,N) are arbitrary constants, κi

and ηi are localized excitations with the properties
κi(±∞) = 0, ηi(±∞) = consts. From (16), one can
know that ζ may be a multi-valued function in some
suitable regions of x by choosing the functions ηi ap-
propriately. Therefore, the function χx, which is obvi-
ously an interaction solution of N localized excitations
due to the property ζ |x→∞→∞, may be a multi-valued
function of x in these areas, though it is a single-valued
function of ζ . Actually, most of the known multi-loop
solutions are special cases of (16).

Specifically, χ and ψ are chosen as

ψ = 1+ tanh(y) , (17)

χx = 0.5sech2(ζ −0.5t) ,
x = ζ −C tanh(ζ −0.5t) ,

(18)

where C is a characteristic parameter, which de-
termines the localized structure. Figure 1 describes
these special localized structures, i. e. special anti-
dromion, dromion-like anti-peakon, dromion-like anti-
semifoldon with C = 0.5, 0.95, 1.5, respectively. They
localize as anti-bell-like soliton in the y-direction and
anti-bell-like soliton, anti-peakon, and anti-loop soli-
ton in the x-direction, respectively.

Next, let us study interaction behaviours among
these special anti-solitons produced by the multi-
valued functions above. If we take the specific choice
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Fig. 2. Incompletely elastic interaction among two dromion-like anti-semifoldons and one special anti-dromion at time (a)
t = −15, (b) t = −0.1, and (c) t = 15. The parameters are chosen as A = −2, B = C1 = 1, a = 0.5, b = 0.25, C = D = 1.5,
E = 0.5.

N = 3, d1 = 0, d2 = 0.5, and d3 = −0.5 in (16), one
has

χx = 0.3sech2(ζ )+0.5sech2(ζ −0.5t)

+0.7sech2(ζ +0.5t) ,
x = ζ −C tanh(ζ )−D tanh(ζ −0.5t)
−E tanh(ζ +0.5t) ,

(19)

where C, D, and E are characteristic parameters,
which determine the types of interaction. Moreover,
ψ is given by (17). From the expression v with (19)
and (15), one can obtain three solitons, one is static,
another is moving along positive x-direction, and the
last one is moving along negative x-direction. Note that
it is for the first time that three special anti-solitons
produced by multi-valued functions are studied analyt-
ically and graphically.

The interactions between solitons may be regarded
as elastic or inelastic. It is called completely elas-
tic, if the amplitude, velocity, and wave shape of the
solitons do not changed after their interaction. Other-
wise, the interaction between solitons is inelastic (non-
completely elastic and completely non-elastic). Like
the collisions between two classical particles, a colli-
sion in which the solitons stick together is sometimes
called completely inelastic.

Firstly, if we take the specific values C = D = 1.5,
E = 0.5 in (19), then we can successfully construct an
interaction among two dromion-like anti-semifoldons
and one special anti-dromion, of which possess a phase
shift for the physical quantity v depicted in Figure 2.
From Figure 2, one can find that the interaction may
exhibit a incompletely elastic behaviour since solitons’
shapes and amplitudes are not completely maintained
any more after interaction. Moreover, we can see that
this interaction possesses a novel property, namely,
there exists a multi-valued semi-foldon in the process
of their collision, which is different from the reported

case among three single-valued structures in previous
literature [21].

The phase shift can also be observed. Prior to
interaction, the velocities of the smaller anti-
semifoldon, the special anti-dromion, and the larger
anti-semifoldon have set to be {v01x = d1 = 0},{v02x =
d2 = 0.5}, and {v03x = d3 = −0.5}, respectively. The
smaller anti-semifoldon site changes from x = −1 to
x = 1, then resides at x = 1 and maintains its initial
velocity {v1x = v01x = 0} (i. e. static) after interaction.
Therefore the magnitude of the phase shift of the static
smallest anti-semifoldon is 3. The final velocities v2x

and v3x of the moving larger solitons also completely
maintain their initial velocities {v2x = v02x = 0.5} and
{v3x = v03x =−0.5}.

Similarly, we can discuss the interaction among one
dromion-like anti-semifoldons and two special anti-
dromion by setting the specific values C = 0.5, D =
1.5, and E = 0.5 in (19). This case is still a non-
completely elastic interaction. For the limit of length,
we omit the detailed discussion about it.

Secondly, if we choose the specific values C =
0.95, D = 1.5, and E = 0.95 in (19), then we
can successfully obtain an interaction among two
dromion-like anti-peakons and one dromion-like anti-
semifoldon. This interaction is also a non-completely
elastic behaviour since solitons’ shapes and ampli-
tudes are not completely maintained any more after
interaction (see Fig. 3). Different from interactions
among three single-valued structures [21], the multi-
valued semi-foldon also appears in the process of
their collision. Through careful analysis similar to
that in Figure 2, we know that the phase shift of
the static smaller dromion-like anti-peakon is 1.1.
The smaller dromion-like anti-peakon and the mov-
ing larger dromion-like anti-peakon and dromion-like
anti-semifoldon maintain their initial velocities {v1x =
v01x = 0} (i. e. static), {v2x = v02x = 0.5}, and {v3x =
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Fig. 3. Non-completely elastic interaction among two dromion-like anti-peakons and one dromion-like anti-semifoldon at
time (a) t =−15, (b) t =−1, and (c) t = 15. The parameters are chosen as A =−2, B = C1 = 1, a = 0.5, b = 0.25, C = 0.95,
D = 1.5, E = 0.95.

v03x = −0.5}, respectively. Of course, we can inves-
tigate non-completely elastic behaviour among one
dromion-like anti-peakons and two dromion-like anti-
semifoldon by selecting C = 0.95, D = 1.5, and E =
1.5. Here we still omit it for the limit of length.

In the following, when we set the specific values
C = 1.5, D = 0.5, and E = 0.95 in (19), we can discuss
the interaction among special anti-dromion, dromion-
like anti-peakon, and dromion-like anti-semifoldon.
This interaction is also a non-completely elastic be-
haviour since solitons’ shapes and amplitudes are not
completely maintained any more after interaction (see
Fig. 4). Similarly to two cases above, the semi-foldon
exists again during the interaction among these soli-
tons. Through careful analysis similar to that in Fig-
ure 2, we know that the phase shift of the static
dromion-like anti-semifoldon is 0.88. The dromion-
like anti-semifoldon and the moving special anti-
dromion and dromion-like anti-peakon also preserve
their initial velocities.

Finally, it is interesting to note that although the
above selections are all non-completely elastic interac-
tion behaviours, we can also construct localized coher-
ent structures with completely elastic interaction be-
haviours by appropriately selecting the values of C, D,
and E in (19).
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Fig. 4. Non-completely elastic interaction among special anti-dromion, dromion-like anti-peakon and dromion-like anti-
semifoldon at time (a) t = −15, (b) t = −1, and (c) t = 15. The parameters are chosen as A = −2, B = C1 = 1, a = 0.5,
b = 0.25, C = 1.5, D = 0.5, E = 0.95.

If we select the specific values C = D = E = 1.5
in (19), then we can successfully construct the inter-
action among three dromion-like anti-semifoldons for
the physical quantity v depicted in Figure 5. From Fig-
ure 5, one can find that the interaction among them
may exhibit a completely elastic behaviour since soli-
tons’ shapes, amplitudes, and velocities are completely
maintained after interaction. The phase shift is not ob-
served. Before interaction, the static smallest semi-
foldon is located at x = 0 and after the interaction,
it is still located at x = 0 and then resides at x = 0
and maintains its initial velocities {v1x = v01x = 0}.
While the moving larger semifoldons also completely
maintain their initial velocities {v2x = v02x = 0.5} and
{v3x = v03x =−0.5}, respectively. These properties of
interaction among three dromion-like anti-semifoldons
are similar to that of an interaction among three semi-
foldons in [22].

5. Summary and Discussion

In summary, a modified mapping method is pre-
sented with positive and negative symmetric ansätz
form. Using this method, we obtain variable separa-
tion solutions of the (2+1)-dimensional MDWW sys-
tem. Based on the variable separation symmetric solu-
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Fig. 5. Completely elastic interaction among three dromion-like anti-semifoldons at time (a) t =−15, (b) t = 0, and (c) t = 15.
The parameters are chosen as A =−2, B = C1 = 1, a = 0.5, b = 0.25, C = D = E = 1.5.

tion (15) and by selecting appropriate functions, four
types of interaction behaviours between special anti-
solitons, constructed by multi-valued functions, are in-
vestigated. The interaction behaviours among special
anti-dromion, dromion-like anti-peakon, and dromion-
like anti-semifoldon are all non-completely elastic
and phase shifts exist, while the interaction behaviour
among dromion-like anti-semifoldons is completely
elastic and without phase shifts. Of course, there are
some pending issues to be further studied. How to
quantify the notion of complete or non-complete elas-
ticity more suitably? What is the general equation for
the distribution of the energy and momentum for these
interactions?

We have also verified that the modified mapping
method is quite concise and useful to generate abun-

dant localized excitations. Actually, this method
presented in this paper is only an initial work, more
work about the method should be concerned. In our
future work, we can also extend this method to other
(2 + 1)-dimensional NLEEs, such as Korteweg–de
Vries equation, Nizhnik–Novikov–Veselov system,
dispersive long wave equation etc.
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