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We present the mixed convective peristaltic motion of a magnetohydrodynamic (MHD) Jeffrey
nanofluid in an asymmetric channel with Newtonian heating. In the peristaltic literature, Newtonian
heating is used for the first time in the present article. The peristaltic flow of a nanofluid with New-
tonian heating is not explored so far. So in the present problem, first we model the mixed convective
peristaltic motion of a MHD Jeffrey nanofluid in an asymmetric channel with Newtonian heating.
According to the realistic approch, the problem formulation is made under long wavelength and low
Reynolds number approximation. We get the four coupled equations. Homotopy perturbation method
(HPM) solutions are calculated for nanoparticle fraction and heat transfer phenomena, while exact
solutions are evaluated for stream function and pressure gradient. The possessions of different pa-
rameters on the flow quantities of observation are analyzed graphically and physically. In the end, the
streamlines are plotted and discussed.
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1. Introduction

Peristaltic motion is an important mechanism for
transporting fluids. This phenomenon usually occurs
when the cross-section of an artery or a muscle con-
tracts and expands periodically by the progression of
a progressive wave. Peristaltic motion happens gener-
ally when a stenosis is created in the functioning of
ureter, chyme movement in intestine, movement of egg
in fallopian tube, the transport of spermatozoa in the
cervical canal, transport of bile in bile duct, transport of
cilia etc. Muthu et al. [1] investigated the effects of vis-
coelastic wall properties and micropolar fluid parame-
ters on the flow with deformable boundaries. Peristaltic
transport of a Newtonian fluid through a uniform and
a non-uniform annulus is developed by Mekheimer [2].
In another article, Mekheimer [3] discussed the ef-
fect of the induced magnetic field on the peristaltic
flow of a couple stress fluid in a channel. Sanyal and
Biswas [4] presumed blood to be an incompressible
viscous Newtonian fluid to discuss two-dimensional
peristaltic motions through a circular tube. Some im-
portant articles describing the features of peristaltic
flows are cited in [5 – 8].

Nanofluids are fluids exhibiting advanced ther-
mal properties, having higher thermal conductivity
and heat transfer coefficients as compared to the
base fluid. They have been widely deliberated for
improved thermal properties. The involvement of
nanofluids with improved heat uniqueness can be
remarkable in conditions of more competent cool-
ing systems, consequential effecting higher produc-
tivity and energy savings. Several prospective appli-
cations for nanofluids are heat exchangers, radiators
for engines, process cooling systems, microelectron-
ics, etc. The idea of nanofluid was first given by
Choi [9]. Later on Buongiorno [10], Sadik and Pra-
muanjaroenkij [11] and Marga et al. [12] analyzed the
convective heat transfer enhancement with nanofluids.
The Cheng–Minkowycz problem for a natural convec-
tive boundary-layer flow saturated by a nanofluid is
discussed by Nield and Kuznetsov [13, 14]. In another
article, Kuznetsov and Nield [15] presented a natu-
ral convective boundary-layer flow of a nanofluid past
a vertical plate. Khan and Pop [16] give the first ar-
ticle for the boundary-layer flow of a nanofluid past
a stretching sheet. Peristaltic flow with nanofluids was
first discussed by Akbar and Nadeem [17] and Akbar
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et al. [18]. Some other important references are cited
in [19 – 21].

Newtonian heating is a heating where the heat trans-
fer rate from the bounding surface with a finite heat
capacity is proportional to the local surface tempera-
ture and which is usually termed conjugate convective
flow [22]. This type of heating on the peristaltic flow
is useful due to its practical applications in hemodyla-
sis and oxygenation, in obtaining information about the
properties of tissues, in hypothermia treatment, san-
itary fluid transport, blood pump in heart lungs ma-
chine, and transport of corrosive fluids. Pop et al. [23]
discussed the asymptotic solutions for the free con-
vection boundary layer flow along a vertical surface in
a porous medium with Newtonian heating. Effects of
partial slip, viscous dissipation, and Joule heating on
Von Kármán flow and heat transfer of an electrically
conducting non-Newtonian fluid is presented by Sa-
hoo [24]. Boundary layer flow and heat transfer over
a stretching sheet with Newtonian heating is taken into
account by Salleh et al. [25].

Here we have the first article in the peristaltic lit-
erature which gives the Jeffrey nanofluid with New-
tonian heating in an asymmetric channel. The homo-
topy perturbation method (HPM) gives the solutions
for nanoparticle fraction and heat transfer for the de-
veloped problem, while exact solutions are constructed
for stream function and pressure gradient. Graphical
discussion and physical behaviour of the conjugate pa-
rameter for Newtonian heating γi, Hartman number
M, thermophoresis parameter Nt, Brownian motion pa-
rameter Nb, Jeffrey fluid Parameter λ1, and amplitudes
are presented. Main results are given at the end of the
article.

2. Formulation of Flow Equations

Here we present an incompressible MHD Jeffrey
nanofluid with Newtonian heating in an asymmetric
channel with channel width d1 + d2, and a sinusoidal
wave propagating with constant speed c along the walls
of the channel. Asymmetry in the channel flow is re-
tained due to the following wall surfaces expressions:

Y = H1 = d1 +a1 cos
[2π

λ
(X− ct)

]
,

Y = H2 =−d2−b1 cos
[2π

λ
(X− ct)+φ

]
.

(1)

In the above equations, a1 and b1 denote the wave
amplitudes, λ is the wave length, d1 + d2 the channel

width, c the wave speed and t the time. X is the direc-
tion of wave propagation, and Y is perpendicular to X .
The expression for fixed and wave frames are related
by the following relations:

x̄ = X̄− ct , ȳ = Ȳ , ū = Ū− c

v̄ = V̄ , p(x) = P(X̄ , t) .
(2)

The Jeffrey fluid model is defined by

S =
µ

1+λ1
(γ̇ +λ2γ̈) . (3)

In above equation, µ is the viscosity, λ1 the ratio of re-
laxation to retardation times, γ̇ the shear rate, λ2 the
retardation time, and dots denote the differentiation
with respect to time. We introduce the following non-
dimensional quantities:

x =
2π x̄
λ

, y =
ȳ
d1

, u =
ū
c1

,

v =
v̄
c1

, t =
2π t̄
λ

, δ =
2πd1

λ
,

d =
d2

d1
, P =

2πd2
1P

µc1λ
, h1 =

h̄1

d1
,

h2 =
h̄2

d2
, Re =

ρc1d1

µ
, a =

a1

d1
,

b =
a2

d1
, d =

d2

d1
, S =

S̄d1

µc1
,

θ =
T̄ − T̄0

T̄1− T̄0
, σ =

C̄−C̄0

C̄1−C̄0
,

α =
k

(ρc) f
, Nb =

(ρc)pDB(C̄1−C̄0)
(ρc) f α

,

Pr =
ν

α
, Nt =

(ρc)pDT̄ (T̄1− T̄0)2

T̄0(ρc) f α
,

Gr =
gαd2

1(T̄1− T̄0)
νc1

, Br =
gαd2

1(C̄1−C̄0)
νc1

,

(4)

where Pr, Nb, Nt, Gr, and Br, denote respectively
the Prandtl number, the Brownian motion parameter,
the thermophoresis parameter, the local temperature
Grashof number, and the local nanoparticle Grashof
number.

Stream function and velocity field are related by the
expressions

u =
∂Ψ

∂y
v =−δ

∂Ψ

∂x
. (5)
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With the help of (3) – (5) under the the long wavelength
and low Reynolds number assumption, we have the fol-
lowing equations:

1
1+λ1

∂ 4Ψ

∂y4 −M2 ∂ 2Ψ

∂y2 +Gr
∂θ

∂y
+Br

∂σ

∂y
= 0 , (6)

dP
dx

=
∂

∂y

[ 1
1+λ1

∂ 2Ψ

∂y2 −M2
]
+Grθ +Brσ , (7)

∂ 2θ

∂y2 +Nb
∂θ

∂y
∂σ

∂y
+Nt

(
∂θ

∂y

)2
= 0 , (8)

∂ 2σ

∂y2 +
Nt

Nb

(
∂ 2θ

∂y2

)
= 0 . (9)

The non-dimensionaless boundary conditions are

Ψ =
F
2

,
∂Ψ

∂y
=−1 , θ

′(h1)+ γiθ(h1) =−Bi ,

σ = 1 at y = h1 = 1+acosx ,

(10a)

Ψ =−F
2

,
∂Ψ

∂y
=−1 , θ = 0 ,

σ = 0 at y = h2 =−d−bcos(x+φ) ,
(10b)

where γ = hsd1 is the conjugate parameter for Newto-
nian heating, and hs is the heat transfer parameter.

The flow rates in fixed and wave frame are related
by

Q = F +1+d . (11)

3. Flow Profiles

Adopting the procedure done by [17, 18], the solu-
tion expressions for stream function, temperature pro-
file, nanoparticle fraction, and pressure gradient can be
written as

Ψ(x,y) = H10y2 +H11y3 +H27y+H26

+H24

(
cosh

(√
M2(1+λ )y

)
+sinh

(√
M2(1+λ )y

))
·
(

M2(1+λ )
)−1

H25

(
cosh

(√
M2(1+λ )y

)
− sinh

(√
M2(1+λ )y

))(
M2(1+λ )

)−1
,

(12)

dP
dx

=
(
(1+H15)H17H20− (1+H15)H19H20

−H16H21−H15H16H21 +H18H21 +H15H18H21

· (1+H14)H17H22 +(1+H15)H19H22 +H12H22H21

+H16H23−H13H21H22 +H16H12 +H14H16H23

−H18H23−H14H18H23−H12H20H23 (13)

+H13H20H23−H21H22F +H20H23F
)(

H19(H20

−H22)+H17(−H20 +H22)+(H16−H18)(H21−H23)

− (H21H22−H20H23)(h1−h2)
)−1

,

θ(x,y) =
2γ(h2− y)

1+ γ(h1−h2)
− γNby2

2(h1−h2)(1+ γ(h1−h2))
+H1y+H2 , (14)

σ(x,y) =
(h2− y)
(h2−h1)

− Nt

Nb

(
γ(h2− y)

1+ γ(h1−h2)

− γNby2

2(h1−h2)(1+ γ(h1−h2))

+H1y+H2

)
+H3y+H4 ,

(15)

where H1−H27 are constants evaluated using Mathe-
matica 8.

The dimensionless pressure rise ∆P is defined by

∆P =
∫ 1

0

(
dP
dx

)
dx . (16)

4. Graphical Illustration

In this section, we present the pressure rise, pres-
sure gradient, velocity, temperature profile, nanoparti-
cle fraction, and streamlines for Biot number Bi, Hart-
man number M, thermophoresis parameter Nt, Brow-
nian motion parameter Nb, local temperature Grashof
number Gr, relaxation time λ1, and conjugate param-
eter for Newtonian heating γ through graphs. Numer-
ical integration is performed for the pressure rise per
wavelength. The pressure rise against volume flow rate
is illustrated in Figures 1a to 1e. It is noticed that the
pressure rise and volume flow rate have opposite be-
haviours. From Figures 1a to 1e it is found that in the
pumping region (∆P > 0), the pressure rise decreases
with the increase in Hartman number M, conjugate pa-
rameter for Newtonian heating γ , and relaxation time
λ1 while the pressure rise increases with the increase
in thermophoresis parameter Nt and local temperature
Grashof number Gr. Figures 1a and 1e also show that
in the augmented pumping region for (∆P < 0), the
pressure rise gives the opposite results for all parame-
ters as compared to the pumping region (∆P > 0). Free
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Fig. 1. Pressure rise for (a) Nt = 2, γ = 2, λ1 = 0.5, and Gr = 2; (b) M = 0.5, λ1 = 0.5, Nb = 2, and Gr = 2; (c) λ1 = 0.5,
M = 0.5, Gr = 2, and γ = 2; (d) Nb = 2, γ = 2, M = 0.5, and M = 2; (e) Nb = 2, γ = 2, Gr = 0.5, and M = 2. Other parameters
are d = 1, φ = 0.2, Br = 2, a = 0.4, Nt = 0.4, and b = 0.2.
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Fig. 2. Velocity profile for (a) Gr = 2, λ1 = 0.5, and Nb = 2; (b) M = 2, Gr = 2, and λ1 = 2; (c) M = 2, λ1 = 0.5, and Nb = 2;
(d) Nb = 0.5, Gr = 2, and M = 2. Other parameters are a = 0.1, x = 1, d = 1, φ = 0.7, b = 0.5, Br = 2, Nt = 2, Q = 2, and
γ = 2.

pumping region holds when (∆P = 0). Variations of
Hartman number M, relaxation time λ1, Grashof num-
ber Gr, and Brownian motion parameter Nb on the ve-
locity profile are shown in Figures 2a to 2d. Figure 2a
depicts that the behaviour of the velocity near the chan-
nel walls and at the center are not similar in view of the
Hartman number M. The velocity field increases due to
an increase in M near the channel walls while the ve-
locity field decreases at the centre of the channel. The
velocity for the Brownian motion parameter Nb, relax-
ation time λ1, and Grashof number Gr is plotted in Fig-
ures 2b, c, and d. Here the behaviour of the velocity
field in view of relaxation time λ1 and Grashof number
Gr is not same in qualitative sense as compared to the

behaviour of relaxation time λ1 and Brownian motion
parameter Nb.

The pressure gradients for different values of M, γ ,
Gr, and Nb are plotted in Figures 3a to 3d. The mag-
nitude of pressure gradient increases with the increase
in M, γ , Gr, and Nb. It is also observed that the maxi-
mum pressure gradient occurs when x = 0.48, and the
pressure gradient near the channel walls is small. This
leads to the fact that flow can easily pass in the middle
of the channel.

Variations of temperature profile for different val-
ues of conjugate parameter for Newtonian heating
γ and Brownian motion parameter Nb are displayed
in Figures 4a and 4b. It is seen through Figure 4a
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Fig. 3. Pressure gradient for (a) Bi = 2, Gr = 2, and Nb = 0.4; (b) M = 2, Gr = 2, and Nb = 0.4; (c) γ = 2, M = 2, and
Gr = 0.5; (d) γ = 2, Nb = 0.5, and M = 2. Other parameters are λ1 = 0.5, a = 0.4, Q =−1, d = 1, φ = 0.2, b = 0.2, Br = 2,
and Nt = 2.

and b that when we increase the conjugate parame-
ter for Newtonian heating γ and the Brownian mo-
tion parameter Nb, the temperature profile increases.
Figure 5a and b depicts the nanoparticle fraction for
different values of the conjugate parameter for New-
tonian heating γ and the thermophoresis parameter
Nt. It is analyzed that when we increase the conju-
gate parameter for Newtonian heating γ and the ther-
mophoresis parameter Nt, the nanoparticle fraction
increases.

The trappings for different values of λ1, Gr, and Nt
are shown in Figures 6a to 6f. It is seen from Fig-

ures 6a and b that with the increase in the value of
λ1, the size of the trapping bolus increases (in the
second and third quadrant). Streamlines for different
values of Gr have been plotted in Figure 6c and d.
It is found that with an increase in Gr, the size of
the trapping bolus increases, and the number of the
trapping bolus decreases (in all quadrants). Figures 6e
and f depict that with the increase in the value of Nt,
the size of the trapping bolus decreases (in the sec-
ond and fourth quadrant) while in the first and third
quadrant size and number of the trapping bolus de-
creases.
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Fig. 4. Temperature profile for (a) Nb = 0.4; (b) γ = 2. Other parameters are a = 0.1, x = 1, d = 1, φ = 0.7, b = 0.5, and
Nt = 2.

5. Conclusions

We have presented the mixed convective peristaltic
motion of a MHD Jeffrey nanofluid in an asymmetric
channel with Newtonian heating. The main points of
the current study are as follows.

i. It is noticed that the pressure rise and volume flow
rate have opposite behaviours.
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Fig. 5. Nanoparticle fraction for (a) Nt = 0.4; (b) γ = 2. Other parameters are a = 0.1, x = 1, d = 1, φ = 0.7, b = 0.5, and
Nb = 2.

ii. It is found that in the pumping region the pressure
rise decreases with the increase in Hartman num-
ber M, conjugate parameter for Newtonian heating
γ , and relaxation time λ1 while the pressure rise
increases with the increase in thermophoresis pa-
rameter Nt and local temperature Grashof number
Gr.

iii. It depicts that the behaviour of the velocity near
the channel walls and at the center are not similar
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Fig. 6. Streamlines for panels (a) and (b), where λ1 = 0.4, 0.6; (c) and (d) for Gr = 2, 3; (e) and (f) for Nt = 0.2, 0.6. Other
parameters are Q = 2, a = 0.1, x = 1, d = 1, φ = 0.7, b = 0.5, Br = 2, Nb = 2, and γ = 2.
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in view of the Hartman number M. The velocity
field increases due to an increase in M near the
channel walls while the velocity field decreases at
the centre of the channel.

iv. Here the behaviour of the velocity field in view
of relaxation time λ1 and Grashof number Gr is
not the same in a qualitative sense as compared to
the behaviour of relaxation time λ1 and Brownian
motion parameter Nb.

v. The magnitude of pressure gradient increases with
the increase in M, γ , Gr, and Nb.

vi. When we increase the conjugate parameter for
Newtonian heating γ and the Brownian mo-
tion parameter Nb, the temperature profile in-
creases.

vii. It is analyzed that when we increase the conjugate
parameter for Newtonian heating γ and the ther-
mophoresis parameter Nt, the nanoparticle fraction
increases.

viii. With an increase in Gr, the size of the trapping bo-
lus increases and the number of the trapping bolus
decreases (in all quadrants).

ix. It is found that with the increase in the value of
Nt, the size of the trapping bolus decreases (in the
second and fourth quadrant) while in the first and
third quadrant, size and number of the trapping bo-
lus decreases.

x. It is observed that with the increase in the value of
λ1, the size of the trapping bolus increases (in the
second and third quadrant).
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