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The purpose of this study is to apply the Laplace–Adomian Decomposition Method (LADM) for
obtaining the analytical and numerical solutions of a nonlinear differential equation that describes
a magnetohydrodynamic (MHD) flow near the forward stagnation point of two-dimensional and ax-
isymmetric bodies. By using this method, the similarity solutions of the problem are obtained for
some typical values of the model parameters. For getting computational solutions, we combined the
obtained series solutions by LADM with the Padé approximation. The method is easy to apply and
gives high accurate results. The presented results through tables and figures show the efficiency and
accuracy of the proposed technique.
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1. Introduction

Nonlinear phenomena, that appear in many areas
of scientific fields such as solid state physics, plasma
physics, fluid mechanics, population models, and
chemical kinetics, can be defined by nonlinear dif-
ferential equations. One of the most important kinds
of these equations is the nonlinear differential equa-
tion that characterize boundary layer problems in un-
bounded domains.

Firstly, Sakiadis in 1961 [1] solved the problem of
forced convection along an isothermal constantly mov-
ing plate which is a classical problem of fluid me-
chanics. Magnetohydrodynamics (MHD) is consider-
ing the interaction of conducting fluids with electro-
magnetic problems. The flow of an electrically con-
ducting fluid within the magnetic field is one of the
most applicable sections in various areas of engineer-
ing and technology. The viscous flow due to a stretch-
ing boundary is important in extrusion processes when
sheet material is pulled out of an orifice with rasing
velocity.

Therefore, since the numerical/analytical study of
fluid flow across a thin liquid film is very important
in many branches of science and technology, many au-
thors paid much attention to considering the behaviour
of this problem numerically and analytically. In the in-
vestigation of boundary layer problems, by applying
a good variables transformation, we convert the system
of the Navier–Stokes equations to a nonlinear ordinary
boundary value problem with a semi-infinite interval.
In [2], the infinite domain is replaced with [−L,L]
and the semi-infinite interval with [0,L] by selecting
a sufficiently large L. Guo [3] converted the problem
of semi-infinite domains to a model of a bounded do-
main. Authors of [4 – 20] presented some other similar
discussions.

The Adomian decomposition method (ADM) has
been applied to a wide class of problems in physics,
biology, and chemical reactions. The method provides
the solution in a rapid convergent series with com-
putable terms [21, 22]. Then by applying this method,
the numerical solutions of some equations can be ob-
tained. In this research, we will combine ADM with
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the Laplace transformation to get the similarity solu-
tion of an important nonlinear differential equation.
This method is proposed in [23 – 25]. A combination
of ADM with Padé approximations has been presented
by Baker [26], and authors of [27 – 29] applied this
method for obtaining the solution of some boundary
layer problems which involve a boundary condition at
infinity.

This paper has the following structure: converting
the model of a system of nonlinear partial differential
equations (PDEs) to a nonlinear ordinary differential
equation is presented in Section 2. In Section 3, we ap-
ply LADM to the obtained ordinary equation from Sec-
tion 2, and in Section 4, the combination of LADM
with the Padé approximant is shown. Finally, the nu-
merical results for the various values of parameters are
reported by tables and figures.

2. Mathematical Formulation of the Problem

Consider an electrically conducting fluid with the
transverse magnetic field B(x) that is flowing past a flat
plate stretched with a power-law velocity. According
to the presented discussions in [30 – 32], suppose that
(u,v) be the velocity components in (x,y) directions,
respectively. Also σ and ν are the electrical conductiv-
ity and kinematic viscosity, respectively. Moreover, we
know that ue(x) = cxm , c > 0, is the external velocity,
and B(x) = B0x

m−1
2 is our magnetic field. Finally, sup-

pose that m is the power-law velocity exponent, and
ρ is the fluid density. Then based on the above as-
sumptions, the corresponding phenomenon can be in-
troduced as follows:

∂u
∂x

+
∂v
∂y

= 0 , (1)

u
∂u
∂x

+ v
∂u
∂y

= ueuex +ν
∂ 2u
∂y2 +

σB2(x)
ρ

(ue−u) , (2)

subject to the following boundary conditions:

u(x,0) = uw(x) = axm , v(x,0) = vw(x) = bx
m−1

2 ,

u(x,∞) = ue(x) ,
(3)

where a and b are constants, and uw(x) and vw(x) are
the stretching and the suction (or injection) velocity.

We define the velocity components u and v by

(u,v) =
(

∂ϕ

∂y
,−∂ϕ

∂x

)
. (4)

By using (4) in (1), (2), and (3), we have

∂ϕ

∂y
∂ 2ϕ

∂x∂y
− ∂ϕ

∂x
∂ 2ϕ

∂y2

= ueuex +ν
∂ 3ϕ

∂y3 +
σB2(x)

ρ
(ue−u) ,

(5)

subject to the boundary conditions

∂ϕ

∂y
(x,0) = axm ,

∂ϕ

∂x
(x,0) =−bx

m−1
2 ,

∂ϕ

∂y
(x,∞) = cxm .

(6)

We introduce ϕ(x,y) as the stream function and τ as
a variable given below:

ϕ(x,y) = x
m+1

2 f (τ)
√

νc , τ = x
m−1

2 y

√
ν

c
. (7)

Now, by applying (7) in (5) and (6), we have

f ′′′(τ)+
m+1

2
f (τ) f ′′(τ)+m(1− f ′2(τ))

+M2(1− f ′(τ)) = 0
(8)

with boundary conditions

f (0) = α , f ′(0) = β , lim
τ→∞

f ′(τ) = 1 , (9)

where

α =
2b

(m+1)
√

νc
, β =

a
c

, M = B0

√
σ

cρ
,

and M2 is the Hartmann number. The analytical dis-
cussions of the above equation have been presented
in [32]. However, to our knowledge, this paper may be
the first attempt to apply a numerical method for ob-
taining some numerical results of (8) and (9).

3. Application of the Laplace Adomian
Decomposition Method

In this section, firstly the Laplace transform algo-
rithm will be employed to the nonlinear ordinary dif-
ferential equation (8) with boundary conditions (9).
For this purpose, we take the Laplace transformation
(L) on both sides of (8) in the presence of the bound-
ary conditions (9). Then, we get
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L{ f (τ)}=
1

s3−M2s

(
α(s2−M2)+ f ′′(0)+ sβ

− m+M2

s
+mL

{
f ′(τ)2}

− m+1
2
L
{

f (τ) f ′′(τ)
})

.

(10)

Our main aim is now to determine the value of f ′′(0)
for different values of the parameters α , β , m, and M.
Then, if we define f ′′(0) = γ , we can solve equation (8)
subject to the initial value conditions

f (0) = α , f ′(0) = β , f ′′(0) = γ , (11)

where γ is an unknown constant that had to be deter-
mined. Now, by applying the conditions (11) into (10),
we get

L{ f (τ)}=
1

s3−M2s

(
α(s2−M2)+ γ + sβ

− m+M2

s
+mL

{
f ′(τ)2}

− m+1
2
L
{

f (τ) f ′′(τ)
})

.

(12)

By using the Laplace decomposition method [33, 34],
we will be able to obtain an analytic solution of (12) in
the form of an infinite series as follow:

f (τ) =
∞

∑
n=0

fn(τ) . (13)

The components fn(τ), for n = 0,1,2, . . ., will be de-
termined by an iterative algorithm. Moreover, we de-
composed the nonlinear terms f ′(τ)2 and f (τ) f ′′(τ)
by using the infinite series of the so-called Adomian
polynomials [21, 22]:

N1( f ) = f ′(τ)2 =

(
∞

∑
n=0

fn(τ)

)′2
=

∞

∑
n=0

An ,

N2( f ) = f (τ) f ′′(τ) =

(
∞

∑
n=0

fn(τ)

)(
∞

∑
n=0

fn(τ)

)′′
=

∞

∑
n=0

Bn ,

where the Adomian polynomials An and Bn can be
shown in the from of

An =
1
n!

[
dn

dξ n N1

(
∞

∑
i=0

ξ
i fi(τ)

)]
ξ=0

,

Bn =
1
n!

[
dn

dξ n N2

(
∞

∑
i=0

ξ
i fi(τ)

)]
ξ=0

.

Some of the components of the above Adomian poly-
nomials can be given by the following formulas:

A0 = f ′20 (τ) , A1 = 2 f ′0(τ) f ′1(τ) ,

A2 = f ′21 (τ)+2 f ′0(τ) f ′2(τ) ,

and

B0 = f0(τ) f ′′0 (τ) , B1 = f1(τ) f ′′0 (τ)+ f0(τ) f ′′1 (τ) ,
B2 = f0(τ) f ′′2 (τ)+ f2(τ) f ′′0 (τ)+ f1(τ) f ′′1 (τ) .

By inserting the above results and Adomian polynomi-
als into (12), we get

L

{
∞

∑
n=0

fn(τ)

}
=

1
s3−M2s

(
α(s2−M2)+ γ + sβ

− m+M2

s
+mL

{
∞

∑
n=0

An

}

− m+1
2
L

{
∞

∑
n=0

Bn

})
.

(14)

Now notice that in the form of (14), a lot of work has
to be done to compute the components fn(τ). There-
fore, we rewrite this equation to the following case, and
then we will do our arithmetics based on the following
formula:

L

{
∞

∑
n=0

fn(τ)

}
=

1
s3

(
α(s2−M2)+ γ + sβ − m+M2

s

+mL

{
∞

∑
n=0

An

}
− m+1

2
L

{
∞

∑
n=0

Bn

}

+M2sL

{
∞

∑
n=0

fn(τ)

})
,

= K(s)+
1
s3

(
mL

{
∞

∑
n=0

An

}
− m+1

2

·L

{
∞

∑
n=0

Bn

}
+M2sL

{
∞

∑
n=0

fn(τ)

})
.

(15)

On the other hand, if we let K(s) =
α(s2−M2)

s3 + γ

s3

+ β

s2 − m+M2

s4 represent the term arising from prescribed
initial conditions, then based on the modified Laplace
decomposition method [35], the function K(s) can be
decomposed into four parts named as K(s) = K0(s)+
K1(s) + K2(s) + K3(s). Hence, for obtaining the fn,
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n ≥ 0, firstly we compare both sides of (15) and then
use the inverse Laplace transform L−1. In this way, an
iterative process will be obtained that gives us the val-
ues of fn for n = 0,1,2, . . .:

f0 = L−1
{

1
s3

(
α
(
s2−M2))} ,

f1 = L−1
{

1
s3

(
β s+M2sL{ f0}+mL{A0}

− m+1
2
L{B0}

)}
,

f2 = L−1
{

1
s3

(
γ +M2sL{ f1}+mL{A1}

− m+1
2
L{B1}

)}
,

f3 = L−1
{

1
s3

(
− m+M2

s
+M2sL{ f1}+mL{A1}

− m+1
2
L{B1}

)}
,

fi = L−1
{

1
s3

(
M2sL{ fi−1}+mL{Ai−1}

− m+1
2
L{Bi−1}

)}
,

i = 4,5, . . . .

(16)

By using the inverse Laplace transform in (16), we can
obtain the initial term f0. Now, we can compute the
value of f1 by using the known value of f0. By con-
tinuing this process, we can find the successive terms.
Thus we have

f0 = α− 1
2

M2
ατ

2 ,

f1 = βτ +
1
2

αM2
τ

2 +
1

240
M2

α(20αm+20α)τ3

− 1
24

M4
ατ

4 +
1

240
M2

α(3αmM2−M2
α)τ5 ,

f2 =
1
2

γτ
2 +
(1

6
M2

β − 1
12

M2mα
2− 1

12
M2

α
2
)

τ
3

+
(
− 1

96
M2

α
3− 1

16
M2

αmβ +
1

24
M4

α

+
1
48

M2
βα− 1

48
M2

α
3m− 1

96
M2

α
3m2
)

τ
4

+
( 1

60
α

2M4− 1
60

α
2mM4

)
τ

5 +
( 1

576
α

3M4

− 1
480

α
3mM4− 1

720
M6

α− 11
2880

α
3m2M4

)
τ

6

+
( 1

840
M6

α
2m− 1

1260
M6

α
2
)

τ
7 +
(
− 11

161280

·α3M6− 3
17920

M6
α

3m2 +
1

3840
α

3mM6
)

τ
8 .

By obtaining the components fi(τ) for i = 0,1,2,3, . . .,
the approximate analytic solution of the equation can
be found from (13). The approximate analytic solution
for the second iteration process is

f (τ) =
2

∑
n=0

fn(τ) = α +βτ +
1
2

γτ
2 +

1
6

M2
τ

3
β

+
(
− 1

96
M2

α
3m2− 1

96
M2

α
3 +

1
48

M2
βα

− 1
16

M2
αmβ − 1

48
M2

α
3m
)

τ
4 +
( 1

80
α

2M4

− 1
240

α
2mM4

)
τ

5 +
( 1

576
α

3M4− 1
480

α
3mM4

− 1
720

M6
α− 11

2880
α

3m2M4
)

τ
6 +
( 1

840
M6

α
2m

− 1
1260

M6
α

2
)

τ
7 +
(
− 11

161280
α

3M6

− 3
17920

M6
α

3m2 +
1

3840
α

3mM6
)

τ
8 .

(17)

From (17), it is evident that the obtained analytic solu-
tions through LADM are power series in the indepen-
dent variable. But these solutions have not the correct
behaviour at infinity according tothe boundary condi-
tion f ′(∞) = 1, and these solutions cannot be directly
applied. Hence, it is essential to combine the series
solutions, obtained by LADM, with the Padé approxi-
mants to overcome this problem.

4. The LADM-Padé Approximation

As mentioned in the previous section, the obtained
series solutions by the LADM (17) has not the correct
behaviour at infinity according to the boundary condi-
tion f ′(∞) = 1, and this power series solution cannot
be directly applied. To overcome this problem, here
the obtained power series (17) will be approximated by
a rational function, called Padé approximation. To this
end, we approximate the power series (17) obtained by
the Laplace–Adomian decomposition method by a ra-
tional function as follows:

[S/N](τ) =
∑

S
j=0 a jτ

j

1+∑
N
j=1 b jτ

j
. (18)

The rational function (18) has S + N + 1 coefficients
that we will determine. We know that, when [S/N](τ)



416 B. Soltanalizadeh et al. · On the Analytic Solution for a Steady Magnetohydrodynamic Equation

is exactly a Padé approximation of the series solu-
tion f (τ) given by (17), then f (τ) − [S/N](τ) =
O(τS+N+1). So we can obtain the coefficients a j and
b j by the following relations:

j

∑
i=0

bi f j−i = a j , j = 0, . . . ,S , (19)

j

∑
i=0

bi f j−i = 0 , j = S +1, . . . ,S +N , (20)

where ak − bk = 0 if k > N. From (19) and (20), we
can achieve the values for ai(0 ≤ i ≤ S) and b j(1 ≤
j ≤ N).

Note that every term of the series solution f (τ)
given by (17) depends on the unknown value γ =
f ′′(0); so its Padé approximant depends on γ , too.
Hence, to compute an accurate analytical solution
of the governing problem, firstly the missing value
γ should be determined with high accuracy. To
get the missing value γ , we will employ the in-
finity boundary condition f ′(∞) = 1. For this pur-
pose, f ′(τ) of the series solution given by (17) is
approximated by the diagonal Padé approximations
[N/N](τ), ( f ′(τ)≈ [N/N](τ)). Then, based on the in-
finity boundary condition, we should have f ′(∞) ≈
[N/N](∞) = 1. Therefore, the subtraction of the high-
est power in the numerator aN and denominator bN

of the diagonal Padé approximations [N/N](τ) should
vanish (aN − bN = 0). So we would expect that
there is a sequence of roots DN = {aN − bN , N =
1,2,3, . . .} that converges towards the actual value
of γ = f ′′(0). The equation DN exhibits many roots
and their number increases with N. If we compare
the roots of two successive sequences, we can iden-
tify the sequence of roots that converges towards
the actual value of f ′′(0). The presented approach
determine the missing value γ = f ′′(0) with high
accuracy.

After computing the missing value γ , an accurate ap-
proximated semi-analytical solution for the governing
problem can be given as Padé approximation of the se-
ries solution given by (17). Now, notice that based on
the presented results in [32], the uniqueness and con-
vergence solution of (8) subject to the boundary condi-
tions (9) depends on the values of m, β , and M. Then
recall the obtained results as follows.

Lemma 1. Let α be any real number and β > 1. Then
there exists a unique concave solution of the prob-
lem (8) and (9) in the two following cases:

Case 1. −1 < m≤ 0 and M2 >−m(β +1) .

Case 2. m > 0 and M2 >−2m .

Moreover, there exists α < l <
√

α2 +4 β−1
m+1 such

that for all τ ≥ 0, we have τ +α ≤ f (τ)≤ τ + l.

Proof. See [32].

Lemma 2. Let α be any real number and 0 ≤ β <
1. Then there exists an unique convex solution of the
problem (8) and (9) in the two following cases:

Case 3. −1 < m≤ 0 and M2 >−2m .

Case 4. m≥ 0 and M2 >−m(β +1) .

Proof. See [32].

In this section, based on the above lemmas, we will
obtain the numerical result of problem (8) and (9) in
the above four cases.

Example 1. Consider (8) and (9) when the model pa-
rameters satisfy Case 1. In this example, we consider
two types of these model parameters. In Case 1, let α =
1, m =− 1

2 , and β = 2, and on this assumption, we must
have M2 > 3

2 . The obtained computational values of
the missing value f ′′(0) by using the LADM–Padé ap-
proximation are presented in Table 1. Further, some of
the computed similarity solutions using LADM com-
bined with [16/16]-Padé approximations for f (τ) and
f ′(τ) for the viscous values of the model parameters
M are shown in Figures 1 and 2, respectively. For an-
other case of Example 1, consider the governing prob-
lem with α = −2, m = − 3

4 , and β = 3. Under this
condition, we must have M2 > 3. The obtained re-
sults are plotted in Figures 3 and 4 for f (τ) and f ′(τ),
respectively.

Example 2. Consider (8) and (9) when the parame-
ters satisfy Case 2: α = 1, m = 2, and β = 4. In this
case, we must have M2 ≥ −4. The obtained computa-
tional values of f ′′(0) by using the LADM–Padé ap-
proximation for the viscous values of the model pa-
rameters M are reported in Table 2. Additionally, some
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Table 1. Computational values of f ′′(0) for Example 1 by choosing α = 1, m =− 1
2 , β = 2, and different values of M.

M =
√

2 M =
√

3 M = 2 M = 3 M = 4 M =
√

20
[10,10] −1.09958191 −1.513306711 −1.83357682 −2.9368438037 −3.9852628901 −4.4743012634
[12,12] −1.09942565 −1.513282601 −1.83357206 −2.9368438328 −3.9852629506 −4.4724422437
[14,14] −1.09787349 −1.513275018 – −2.9368438181 −3.9852629459 −4.4724416716
[15,15] −1.09778324 −1.513275016 −1.83357534 −2.9368438173 −3.9852629442 −4.4724416694
[16,16] −1.09778363 −1.513275015 −1.83357238 −2.9368438174 −3.9852629442 −4.4724416693

Table 2. Numerical results of Example 2 for f ′′(0) and several values of M.

M = 1 M =
√

3 M = 2 M = 3 M = 5 M = 10
[10,10] −12.65484970 −13.46365794 −13.85268351 −15.6408674939 −20.8486905354 −33.8353658883
[12,12] −12.69014233 −13.47234618 −13.85317133 −15.6402269974 −20.2212915102 −33.8353660148
[14,14] −12.62562003 −13.45567862 −13.84791606 −15.2273846080 −20.2212926665 −33.8353659259
[15,15] −12.62619367 −13.45613634 −13.84847111 −15.6402608728 −20.2212916630 −33.8353659256
[16,16] – −13.45681634 −13.84931284 −15.6402610818 −20.2212915978 −33.8353659256

Table 3. Numerical results of f ′′(0) for Example 3 and several values of M.

M =
√

2 M = 2 M = 3 M = 5 M = 7 M = 10
[10,10] 0.6269014122 0.9666115894 1.5001960642 2.525568688048 3.5362029386543 5.0440809374667
[12,12] 0.6265451802 0.9666107317 1.5001960870 2.525568711608 3.5362029305870 5.0441208018978
[14,14] 0.6266928866 0.9666107591 1.5001960835 2.525569165810 3.5362029305948 5.0441208020202
[16,16] 0.6267354530 0.9666108835 1.5001960835 2.525568711197 3.5362029305861 5.0441208020159

Table 4. Numerical results of f ′′(0) for Example 4 and several values of M.

M = 0 M =
√

2 M = 3 M = 5 M = 7 M = 10
[10,10] 1.02114743 1.19990732 1.35348958 2.3884155638 3.1484795288 4.3189689080
[12,12] 1.01399769 1.19944920 1.66833288 2.3865157673 3.1484793135 4.3192026648
[14,14] 1.02482320 1.20023671 1.66833102 2.3865157257 3.1484794833 4.3192027855
[15,15] 1.01831010 1.19977241 1.66833136 2.3865157307 3.1484794831 4.3192027854

Fig. 1. Plot of LADM-Padé approximate solution of f (τ) for
Example 1 by choosing α = 1, m =− 1

2 , β = 2, and different
values of M.

Fig. 2. Plot of LADM-Padé approximate solution of f ′(τ) for
Example 1 by choosing α = 1, m =− 1

2 , β = 2, and different
values of M.
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Fig. 3. Plot of LADM-Padé approximate solution of f (τ) for
Example 1 with α =−2, m =− 3

4 , β = 3, and several values
of M.

of the computed similarity solutions by using LADM
coupled with [16/16]-Padé approximations for f ′(τ)
and f (τ) for the different values of M are plotted in
Figures 5 and 6, respectively.

Example 3. Consider (8) and (9) when the parame-
ters satisfy Case 3: α = 1, m = − 1

2 , and β = 1
2 . On

this assumption, we must have M2 ≥ 1. Some of the
numerical results of f ′′(0) by applying the LADM–
Padé approximation for the model parameters M are

Fig. 4. Plot of LADM-Padé approximate solution of f ′(τ) for
Example 1 with α =−2, m =− 3

4 , β = 3, and several values
of M.

Fig. 5. Plot of LADM-Padé approximate solution of f ′(τ) for
Example 2 and several values of M.

Fig. 6. Plot of LADM-Padé approximate solution of f (τ) for
Example 2 and several values of M.

Fig. 7. Plot of LADM-Padé approximate solution of f ′(τ) for
Example 3 and various values of M.
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Fig. 8. Plot of LADM-Padé approximate solution of f (τ) for
Example 3 and various values of M.

Fig. 9. Plot of LADM-Padé approximate solution of f ′(τ) for
Example 4 and different values of M.

reported in Table 3. Further, the computed similarity
solutions for f ′(τ) and f (τ) for the various values of
M are shown in Figures 7 and 8.

Example 4. Consider (8) and (9) when the parameters
satisfy Case 4: α = 1, m = 3

2 , and β = 3
5 . For having

an unique solution, we must select M > −2.4. The

Fig. 10. Plot of LADM-Padé approximate solution of f (τ)
for Example 4 and different values of M.

obtained computational values of f ′′(0) are reported
in Table 4. Also some of the computed similarity
solutions by using the LADM–Padé approximations
for f ′(τ) and f (τ) for the viscous values of the
model parameters M are plotted in Figures 9 and 10,
respectively.

5. Conclusions

In this article, one of the third-order nonlinear au-
tonomous equations subject to a boundary condition
which is defined at infinity, is considered. The similar-
ity solution is obtained by using the Laplace–Adomian
decomposition method. Then, the computational re-
sults for various values of the parameters of the equa-
tion are obtained by combining LADM with Padé ap-
proximants. Based on our knowledge, this paper is the
first one trying to obtain the computational results for
the presented equation. The numerical results arranged
in tables and figures show the accuracy of the presented
process. It is evidence that this method gives high ac-
curate results in very few iterations and can be applied
to other similar equations.
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