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A mathematical model is developed to examine the effects of an induced magnetic field on the
peristaltic flow in a curved channel. The non-Newtonian pseudoplastic fluid model is used to depict
the combined elastic and viscous properties. The analysis has been carried out in the wave frame of
reference, long wavelength and low Reynolds scheme are implemented. A series solution is obtained
through perturbation analysis. Results for stream function, pressure gradient, magnetic force function,
induced magnetic field, and current density are constructed. The effects of significant parameters on
the flow quantities are sketched and discussed.

Key words: Curved Channel; Induced Magnetic Field.

1. Introduction

Investigations of peristaltic transport of fluids are in-
teresting and have been a topic of several attempts dur-
ing the last few decades owing to their applications in
chyme movement in gastrointestinal tract, spermatozoa
transport in the ductus efferents of male reproductive
tract, the movement of ovum in female fallopian tube,
vasomotion of blood vessels, movement of food bolus
through oesophagus, and many others. After the experi-
mental study of Latham [1], a number of investigations
have been presented on peristalsis under different flow
geometries, assumptions, and fluid models. Few recent
representative studies in this direction are done by Tri-
pathi [2 – 5]; Pandey and Chaube [6]; Pandey and Tri-
pathi [7]; Srinivas and Kothandapani [8]; Abd elmaboud
and Mekheimer [9]; Hayat et al. [10, 11]; Mekheimer
and Abd elmaboud [12]; Mekheimer et al. [13]; Abd
elmaboud and Mekheimer [14]; Gharsseldien et al. [15];
Tripathi and Bég [16]; Tripathi et al. [17 – 19]; Bég [20]
and many others.

Magnetohydrodynamic (MHD) peristaltic flow has
been also an important area of research for the last few
years. The flow effects the field and the field in turn re-

act back to effect the flow. Magnetotherapy, magnetic
resonance imaging, and magnetic devices are few ap-
plications of magnetic fields in physiology. With such
awareness, few researchers studied the influence of an
applied magnetic field on the peristaltic motion. For
example, Nadeem et al. [21] studied the power law
fluid model for blood flow through a tapered artery
with a stenosis. In another investigation, Nadeem and
Awais [22] have discussed the thin film flow of an
MHD Oldroyd 8-constant fluid in a vertical cylinder.
Hayat et al. [23 – 25] have analyzed the MHD effects
on the peristaltic flows of Jeffrey, Carreau, and fourth
grade fluid. The analysis presented in the recent inves-
tigations [26 – 32] also examined the peristalsis with an
applied magnetic field. In continuation, some advance-
ment is made for the peristaltic activity in the presence
of an induced magnetic field. A pioneering work re-
garding an induced magnetic field was done by Pavlov
and Vishnyakov [33]. Afterwards, Mekheimer [34] ex-
amined the MHD flow of a couple stress fluid in
a symmetric channel with an induced magnetic field.
Recently, Hayat et al. [35 – 37] discussed the peri-
staltic transport of incompressible third order, Carreau,
and fourth grade fluids in a symmetric channel under
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Fig. 1. Geometry of flow problem.

the effects of an induced magnetic field, respectively.
In [38], Mekheimer dealt with the flow analysis of an
incompressible magneto-micropolar fluid in the pres-
ence of an induced magnetic field.

Another important aspect dealing with the peristaltic
flow in a curved channel is not given proper atten-
tion so far. The literature is repleted with the peri-
staltic flows in a straight channel. The consideration
of a curved channel is important especially for the
analysis of peristaltic flows in physiological processes.
Mostly, peristalsis is studied in straight channels and
tubes. However, the geometry of most physiological
conduits and glandular ducts is curved. A model of mi-
cro wrinkles on human skin also requires a curved ge-
ometry. The geometry of airways and arterial network
produces swirling flows, similar to the flows found in
curved or twisted pipes. With this motivation, Sato
et al. [39] analyzed the peristaltic flow in a curved
channel. Ali et al. [40] reconsidered the analysis of [39]
in the wave frame of reference. In continuation, Ali
et al. [41, 42] discussed the peristaltic transport of third
order and micropolar fluid in a curved channel.

The present research has been undertaken to investi-
gate the peristaltic transport of a pseudoplastic fluid in
a curved channel. The differential equations are mod-
elled, and the mathematical problem is solved in series
form. Special attention in the analysis is given to the in-
duced magnetic field effect. The paper is structured as
follows: Section 2 presents the mathematical formula-
tion, Section 3 contains the series solutions, and a dis-
cussion is given in Section 4; Section 5 includes con-
cluding remarks.

2. Mathematical Formulation

Consider a curved channel with half width a. The
circular shape of the channel has radius R and cen-

tre O with the space occupied by an incompress-
ible pseudoplastic fluid. A sinusoidal wave of veloc-
ity c propagates on the channel walls. We choose
coordinates (R̄, X̄) with X̄ in the direction of wave
propagation and R̄ transverse to it as shown in Fig-
ure 1. An external magnetic field of strength H∗0(
= H0

R∗

R∗+R̄

)
acts in the radial direction (H0 is the con-

Fig. 2. (a) Pressure rise ∆Pλ versus flow rate θ for α = 0.4,
M = 1.4, E = 1, and ξ = 2. (b) Pressure rise ∆Pλ versus flow
rate θ for α = 0.4, M = 1.4, E = 1, and k = 2. (c) Pressure
rise ∆Pλ versus flow rate θ for α = 0.2, k = 2.5, ξ = 0.01,
and E = 1.4.
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Fig. 3. (a) Axial velocity u versus r for ξ = 0.01, α = 0.6,
M = 1.9, x = 0.6, and θ = 2.5. (b) Axial velocity u versus r
for k = 3.2, α = 0.6, M = 1.9, x = 0.6, and θ = 2.8. (c) Axial
velocity u versus r for ξ = 0.01, α = 0.6, k = 3.2, x = 0.6,
and θ = 1.5.

stant magnetic field). This results in an induced mag-
netic field H

(
h̄r̄ (R̄, X̄ , t̄) , h̄x̄ (R̄, X̄ , t̄) ,0

)
and there-

fore the total magnetic field becomes H+ (H∗0 +
h̄r̄ (R̄, X̄ , t̄) , h̄x̄ (R̄, X̄ , t̄) ,0). The wall surface is repre-
sented by the following expression:

h̄(X̄ , t̄) = a+bsin

(
2π

λ
(X̄− ct̄)

)
. (1)

In the above equations, λ is the wavelength, t the
time, and b the wave amplitude. Indicating the ve-
locity components V̄ and Ū along the radial (R̄)
and axial directions (X̄), respectively, in the fixed
frame, the velocity field V can be represented in the
expression

V = [V̄ (R̄, X̄ , t̄),Ū(R̄, X̄ , t̄),0] . (2)

The fundamental equations governing the flow of an
incompressible fluid are:

Continuity equation

∇ ·V =0 . (3)

Equation of motion [34]

ρ
dV
dt

= divT̄+ µe
(
∇×H+)×H+

= divT̄+ µe

[(
H+ ·∇

)
H+− ∇H+2

2

]
.
(4)

Induction equation

dH+

dt
= ∇×

(
V ×H+)+ 1

ς
∇

2H+ . (5)

ς = σ µe denotes the magnetic diffusivity, σ the elec-
trical conductivity, µe the magnetic permeability, ρ the
density, d/dt the material derivative, and T the Cauchy
stress tensor. The Maxwell equations in the absence of
displacement current are defined by

∇ ·E = 0 , ∇ ·H = 0 , (6)

∇×E =−µe
∂H
∂ t

, ∇×H = J , (7)

J = σ (E + µe (V ×H)) , (8)

in which J, E, and H are the current density, the electric
field, and the magnetic field, respectively. The Cauchy
stress tensor T is given by

T =−pI+S , (9)

S+ λ̄1S∇ +
1
2

(
λ̄1− µ̄1

)
· (A1S+SA1) = µA1 ,

(10)

S∇ =
dS
dt
−SLT−LS , (11)

L = gradV, A1 = L+LT (12)
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where I, p, S, µ , S∇, µ̄1, and λ̄1, respectively, denote
the identity tensor, the pressure, the extra stress ten-
sor, the dynamic viscosity, the upper-convected deriva-
tive, and the relaxation times. The flow equations in the
fixed frame become
∂

∂ R̄
{(R+R∗)V}+R∗

∂U
∂X

= 0 , (13)

ρ

[
∂V
∂ t

+V
∂V
∂ R̄

+
R∗U

R∗+R
∂V
∂X
− U2

R∗+R

]
=−∂ p̄

∂ R̄
+

1
R∗+R

∂

∂R

{
(R∗+ R̄) S̄RR

}
+

R∗

R∗+R

×∂ S̄XR

∂X
− S̄XX

R+R∗
− µe

2ρ

(
∂H+2

∂R

)
+

µe

ρ

×

[(
H0

R∗

R∗+R
+ h̄r

)
∂ h̄r

∂R
+ h̄x̄

R∗

R∗+R
∂ h̄r

∂X
− h̄2

x

R∗+R

]
,

(14)

ρ

[
∂U
∂ t

+V
∂U
∂ R̄

+
R∗U

R∗+R
∂U
∂X

+
UV

R∗+R

]
=− R∗

R∗+R
∂ p̄
∂X

+
1

(R∗+R)2

∂

∂R

{
(R∗+ R̄)2 S̄XR

}
+
(

R∗

R∗+R

)
∂ S̄XX

∂X
− µe

2ρ

R∗

R∗+R

(
∂H+2

∂x

)

+
µe

ρ

[(
h̄x

R∗+R
+

∂ h̄x

∂R

)(
H0

R∗

R∗+R
+ h̄r

)

+
R∗

R∗+R
h̄x̄

∂ h̄x

∂X

]
.

(15)

The above equations can be reduced in a wave frame
(r;x) by defining

x̄ = X− ct̄ , r̄ = R , ū = U− c , v̄ = V̄ , (16)

where (v,u) denote the velocity components in the
wave frame. Now (13) – (15) give

∂ v̄
∂ r̄

+
R∗

r̄ +R∗
∂ ū
∂ x̄

+
v̄

r̄ +R∗
= 0 , (17)

ρ

[
−c

∂ v̄
∂ x̄

+ v̄
∂ v̄
∂ r̄

+
R∗(ū+ c)

R∗+ r̄
∂ v̄
∂ x̄
− (ū+ c)2

R∗+ r̄

]
=−∂ p̄

∂ r̄
+

1
R∗+ r̄

∂

∂ r̄

{
(R∗+R) S̄rr

}
+
(

R∗

R∗+ r̄

)
∂ S̄xr

∂ x̄

− S̄xx

r̄ +R∗
− µe

2

(
∂H+2

∂ r̄

)
+µe

[(
H0

R∗

R∗+ r̄
+ h̄r̄

)
∂ h̄r̄

∂ r̄

+ h̄x̄
R∗

R∗+ r̄
∂ h̄r̄

∂ x̄
− h̄2

x̄

R∗+ r̄

]
, (18)

ρ

[
−c

∂u
∂ x̄

+ v̄
∂ ū
∂ r̄

+
R∗(ū+ c)

R∗+ r̄
∂ ū
∂ x̄
− (ū+ c)v̄

R∗+ r̄

]
=− R∗

R∗+ r̄
∂ p̄
∂ x̄

+
1

(R∗+ r̄)2

∂

∂ r̄

{
(R∗+ r̄)2 S̄xr

}
+
(

R∗

R∗+ r̄

)
∂Sxx

∂ x̄
− µe

2ρ

R∗

R∗+ r̄

(
∂H+2

∂ x̄

)

+ µe

[(
h̄x̄

R∗+ r̄
+

∂ h̄x̄

∂ r̄

)(
H0

R∗

R∗+ r̄
+ h̄r̄

)

+
R∗

R∗+ r̄
h̄x̄

∂ h̄x̄

∂ x̄

]
,

(19)

and the stress components through (2), (10) – (12), and
(16) are given by

S̄rr+λ̄1

{(
−c

∂

∂ x̄
+ v

∂ v̄
∂ r̄

+
R∗

R∗+ r̄
(ū+ c)

∂

∂ x̄

)
S̄rr−2S̄rr

· ∂v
∂ r
− 2R∗

R∗+ r̄
Srx

}
∂v
∂x

+
1
2

(
λ̄1− µ̄1

){
4S̄rr

∂ v̄
∂ r̄

+2S̄rx

(
∂u
∂ r

+
R∗

r +R∗
∂v
∂x
− u+ c

r +R∗

)}
= 2µ

∂v
∂ r

,

(20)

S̄rx +
1
2

(
λ̄1− µ̄1

)(
S̄rr− S̄rx

)
·
(

∂u
∂ r

+
R∗

r +R∗
∂v
∂x
− u+ c

r +R∗

)
+ λ̄1

·

{(
− c

∂

∂ x̄
+ v

∂ v̄
∂ r̄

+
R∗

R∗+ r̄
(ū+ c)

∂

∂ x̄

)
S̄rx

− S̄rr

(
∂u
∂ r
− u+ c

r +R∗

)
− R∗S̄xx

r +R∗
∂v
∂x

}

= µ̄

(
∂u
∂ r

+
R∗

r +R∗
∂v
∂x
− u+ c

r +R∗

)
,

(21)

S̄xx +
1
2

(
λ̄1− µ̄1

){
2S̄rx

(
∂u
∂ r

+
R∗

r +R∗
∂v
∂x
− u+ c

r +R∗

)

+4Sxx

(
v

r +R∗
+

R∗

R∗+ r̄
∂u
∂x

)}
+ λ̄1

{(
− c

∂

∂ x̄

+ v
∂ v̄
∂ r̄

+
R∗

R∗+ r̄
(ū+ c)

∂

∂ x̄

)
Sxx−2S̄rx (22)

×

(
∂u
∂ r
− u+ c

r +R∗

)
−2Sxx

(
v

r +R∗
+

R∗

R∗+ r̄
∂u
∂x

)}

= µ̄

(
v

r +R∗
+

R∗

r +R∗
∂u
∂x

)
,
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To facilitate the analysis, we use the following dimen-
sionless variables:

x =
x̄
λ

, r =
r̄
a

, t =
ct̄
λ

, p =
a2 p̄
cλ µ

, M2 = ReS2Rm ,

Si j =
aS̄i j

cµ
, δ =

a
λ

, u =
ū
c

, v =
v̄
c

, k =
R∗

a
, (23)

E =
−Ē

cH0µe
, λ1 =

λ̄1c
a

, Re =
caρ

µ
, Rm = σ µeac ,

S =
H0

c

√
µe

ρ
, φ =

φ̄

H0a
, µ1 =

µ̄1c
a

, h̄x̄ =−φ̄r̄ ,

h̄r̄ =
R∗

R∗+ r̄
φ̄x̄ , pm = p+

1
2

Reδ
µe (H+)2

ρc2 ,

where δ , Re, Rm, S, and M are the wave, Reynolds,
magnetic Reynolds, Stommer, and Hartman numbers,
respectively. The total pressure pm is a sum of ordinary
and magnetic pressures, E the electric field strength, φ

the magnetic force function, λ1 and µ1 the relaxation
times, and Sxr, Srr, and Sxx are the components of an
extra stress tensor S.

Defining the stream function ψ and the magnetic
force φ function by

u =−∂ψ

∂ r
, v = δ

k
k + r

∂ψ

∂x
,

hx =−∂φ

∂ r
, hr = δ

k
k + r

∂φ

∂x
,

(24)

we see that (17) is satisfied identically; under long
wavelength and low Reynolds number approach, one
has

∂ p
∂ r

= 0 , (25)

∂ p
∂x

=
1

k(k + r)
∂

∂ r

[
(k + r)2Srx

]
+ReS2

[
1

k + r
∂φ

∂ r
+

∂ 2φ

∂ r2

]
,

(26)

E =
k

k + r
∂ψ

∂ r
+

1
Rm

[
∂ 2φ

∂ r2 +
1

k + r
∂φ

∂ r

]
, (27)

Srx =−∂ 2ψ

∂ r2 −
1

k + r

(
1− ∂ψ

∂ r

)
·

[
1−ξ

(
− ∂ 2ψ

∂ r2 −
1

k + r

·
(

1− ∂ψ

∂ r

))2]−1

,

(28)

where ξ =
(
λ 2

1 −µ2
1

)
is the pseudoplastic fluid param-

eter, and (25) shows that p 6= p(r).
The dimensionless boundary conditions for the

present problem are

Ψ =−F
2

,
∂Ψ

∂ r
= 1 , φ = 0 at y = h ,

Ψ =
F
2

,
∂Ψ

∂ r
= 1 , φ = 0 at y =−h .

(29)

Here the dimensionless time mean flow rate F in the
wave frame is related to the dimensionless time mean
flow rate θ in the laboratory frame as

θ = F +2 , F =−
∫ h

−h

∂Ψ

∂ r
dr . (30)

3. Solution Methodology

With an interest in the series solution, we expand the
following quantities in the parameter as follows:

Ψ = Ψ0 +ξΨ1 +O(ξ )2 , (31)

F = F0 +ξ F1 +O(ξ )2 , (32)

p = p0 +ξ p1 +O(ξ )2 , (33)

φ = φ0 +ξ φ1 +O(ξ )2 , (34)

Srx = S0rx +ξ S1rx +O(ξ )2 . (35)

The corresponding zeroth and first-order systems are
presented in the subsequent subsections.

3.1. Zeroth-Order System

∂ p0

∂x
=

1
k(r + k)

∂

∂ r

{
(r + k)2S0rx

}
+M2

(
E− k

r + k
∂ψ0

∂ r

)
,

∂

∂ r

[
1

k(r + k)
∂

∂ r

{
(r + k)2S0rx

}]
+M2k2 ∂

∂ r

(
− 1

r + k
∂ψ0

∂ r

)
= 0 ,

∂ 2φ0

∂ r2 +
1

r + k
∂φ0

∂ r
= Rm

(
E− k

k + r
∂ψ0

∂ r

)
,

S0rx =−∂ 2ψ0

∂ r2 −
1

k + r

(
1− ∂ψ0

∂ r

)
,

Ψ0 =−F0

2
,

∂Ψ0

∂ r
= 1 , φ0 = 0 at y = h ,

Ψ0 =
F0

2
,

∂Ψ0

∂ r
= 1 , φ0 = 0 at y =−h .

(36)
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3.2. First-Order System

∂ p1

∂x
=

1
k(r + k)

∂

∂ r

{
(r + k)2S1rx

}
+M2

(
− k

r + k
∂ψ1

∂y

)
,

∂

∂ r

[
1

k(r + k)
∂

∂ r

{
(r + k)2S1rx

}]
+M2k2 ∂

∂ r

(
− 1

r + k
∂ψ1

∂ r

)
= 0 ,

∂ 2φ1

∂y2

1
r + k

∂φ1

∂ r
=− Rmk

k + r
∂ψ1

∂ r
,

S1rx =−∂ 2ψ1

∂ r2 −
1

k + r
∂ψ1

∂ r

−
[
−∂ 2ψ0

∂ r2 +
1

k + r

(
∂ψ0

∂ r
−1

)]3

,

Ψ1 =−F1

2
,

∂Ψ1

∂ r
= 0 , φ1 = 0 at y = h ,

Ψ1 =
F1

2
,

∂Ψ1

∂ r
= 0 , φ1 = 0 at y =−h .

(37)

The solution of above systems with

F0 = F−ξ F1 (38)

yields the results given below.

ψ(r) = C1 +C2(r + k)2 +(r + k)(C3 cos(b ln(r + k))

+C4 sin(b ln(r + k)))− r + k
b2 +ξ

[
A1 +A2(r + k)2

+(r + k)(A3 cos(b ln(r + k))+A4 sin(b ln(r + k)))

− 1
r + k

{
L0 +L1 ln(r + k)sin(b ln(r + k)) (39)

+L2 ln(r + k)cos(b ln(r + k))+L3 cos(3b ln(r + k))

+L4 sin(3b ln(r + k))+L5 cos(2b ln(r + k))

}

· 1
r + k

L6 sin(2b ln(r + k))

]
,

φ(r) = B1+B2 ln(r + k)− 1
4

Rmξ L0(ln(r + k))2+
1
4

Rm

·
(

E +
1+ξ

b2

)
L0(r + k)2− 2Rm

4b2 (C2 +ξ A2)(r + k)3

− L1ξ Rm

b2 sin(b ln(r + k))− cos(b ln(r + k))× L1ξ Rm

b2

+
ξ Rm

4b2 (2bL5 +L6)sin(2b ln(r + k))+
ξ Rm

4b2 (−2bL6

+L5)× cos(2b ln(r + k))+
ξ Rm

9b2 (3bL3 +L4)sin(3b

· ln(r + k))+
ξ Rm

9b2 (−3bL3 +L4)cos(3b ln(r + k))

+
ξ Rm

b2 (bL1−L2)
(
− ln(r + k)cos(3b ln(r + k))+

2
b

· sin(b ln(r + k))
)

+
(

ln(r + k)sin(b ln(r + k))+
2
b

· cos(b ln(r + k))
)

(L1 +bL2)−
Rm(r + k)2

b4 +8b2 +16
(40)

·
(

(4−b2)cos(b ln(r + k))+
4
b

sin(b ln(r + k))
)

· (C3 +bC4 +ξ (A3 +bA4))−
Rm(r + k)2

b4 +8b2 +16
· (C4−bC3 +ξ (A4−bA3))

·
(

(4−b2)sin(b ln(r + k))− 4
b

cos(b ln(r + k))
)

,

with

b =
√

k2M2−1 , L0 =
21l1

3(b2 +4)
,

L1 =
21l2−b2l2−10bl3

2b3(b2 +1)
, L2 =

21l3−b2l3 +10bl2
2b3(b2 +1)

,

L3 =
21l4−9b2l4−30bl5

8b2(9b2 +1)
, L4 =

21l5−9b2l5+30bl4
8b2(9b2 +1)

,

L5 =
21l6−4b2l6−20bl7

3b2(4b2 +1)
, L6 =

21l7−4b2l7+20bl6
3b2(4b2 +1)

,

l1 = (1+b2)3

(
1
b6 +

3
(
C2

3 +C2
4

)
b2

)
,

l2 =−(1+b2)3
(

3C3
3

4
+

3C3

b4 +
3C3C2

4

4

)
,

l3 =−(1+b2)3
(

3C3
4

4
+

3C4

b4 +
3C4C2

3

4

)
,

l4 =−1
4
(1+b2)3 (C3

3 −3C3C2
4

)2
,

l5 =
(1+b2)3

4

(
C3

3 −3C2
3C4
)

,

l6 =
3(1+b2)3

b2

(
C2

3 −C2
4

)
, l7 =

3(1+b2)3C3C4

b2 .

Note that Ci (i = 1 – 4), Ai (i = 1 – 4), Bi (i = 1,2)
can be determined by the boundary conditions (37)
in (39) – (40). Clearly, once the stream function and
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the magnetic force function are determined, the other
physical quantities of interest can also be computed.
Thus the pressure gradient dp/dx, axial induced mag-
netic field hx, current density Jz, and pressure rise ∆Pλ

are defined as

dp
dx

=− ∂

∂ r

[
(k + r)2

(
− ∂ 2ψ

∂ r2 −
1

k + r

(
1− ∂ψ

∂ r

)

−ξ

[
∂ 2ψ

∂ r2 +
1

k + r

(
1− ∂ψ

∂ r

)]3
)]

× 1
k(k + r)

+M2
[

E− k
k + r

∂ψ

∂ r

]
,

(41)

hx =−∂φ

∂ r
, (42)

Jz =−∂ 2φ

∂ r2 , (43)

∆Pλ =
∫ 1

0

(
dp
dx

)
r=0

dx . (44)

4. Results and Discussion

This section presents the results for pressure rise per
wavelength ∆Pλ , velocity u, axial induced magnetic
field hx, and current density JZ through the influence
of curvature parameter k, pseudoplastic fluid param-
eter ξ , Hartman number M, and magnetic Reynolds
number Rm. Interestingly, k controls the magnitude of
curvature. Results for rectangular straight channel are
deduced for larger values of k (say k→∞). The effects
of emerging parameters are plotted in Figures 2 – 7.

The analysis of peristaltic pumping is important
when the moving wall induces a curvilinear fluid mo-
tion. The pumping action is due to the dynamic pres-
sure exerted by the walls on the fluid trapped between
the contraction regions. The effect of curvature pa-
rameter k on the pressure rise is discussed in Fig-
ure 2a. We observe that the presence of curvature in-
creases ∆Pλ in the pumping region [41]. Pressure rise
increases as one moves from curved to straight chan-
nel. The peristalsis has to work against lesser pressure
rise in a curved channel in comparison to a straight
channel. The free pumping flux increases in going
from curved to straight channels. In the copumping
region, where the pressure assists the flow, a mixed
behaviour of the curvature parameter is observed for
fixed values of flow rate. The influence of ξ on the
pressure rise per wavelength is shown in Figure 2b. In

the pumping region (∆ pλ > 0, θ > 0), ∆ p increases
by increasing parameter ξ for fixed flow rate θ . This
means that the peristalsis has to work against a greater
pressure rise for a pseudoplastic fluid than for a vis-
cous fluid in the pumping region. For free pumping

Fig. 4. (a) Magnetic force function φ versus r for ξ = 0.01,
M = 2, α = 0.3, E = 0, x =−0.2, Rm = 4, and θ =−3. (b)
Magnetic force function φ versus r for M = 2, α = 0.6, k = 2,
E = −1, x = 0.6, Rm = 4, and θ = 2.8. (c) Magnetic force
function φ versus r for ξ = 0.01, α = 0.6, k = 2, E = −1,
x = 0.6, Rm = 4, and θ = 2.8.
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Fig. 5. (a) Axial induced magnetic field hx versus r for ξ = 0.01, α = 0.6, M = 2.3, E = 1, Rm = 3, x = 0.6, θ = 2.8. (b) Axial
induced magnetic field hx versus r for α = 0.6, M = 2.3, E = 1, k = 3.5, Rm = 3, x = 0.6, and θ = 2.8. (c) Axial induced
magnetic field hx versus r for ξ = 0.01, α = 0.1, Rm = 4, L = 1, k = 3.5, x =−0.2, and θ = 1. (d) Axial induced magnetic
field hx versus r for ξ = 0.01, α = 0.6, M = 2.3, L = 1, k = 2, x = 0.6 and θ = 2.8.

and copumping regions, it is noted that ∆ p decreases
by increasing ξ . Figure 2c describes the pressure rise
∆ pλ against the mean flow rate θ for different val-
ues of M. The Hartman number M is a dimension-
less quantity characterizing the flow of a conducting
fluid in a transverse magnetic field. Here an increase
in M investigated a decrease in the pressure rise. We
observe that ∆Pλ in the pumping region (∆ pλ > 0,
θ > 0) decreases by increasing M for the fixed val-
ues of flow rate. However for the case of copump-
ing (∆ pλ < 0), the flow rate θ is an increasing func-
tion of M. There is no difference between the pseu-
doplastic fluid and the viscous fluid in the free pump-
ing region (∆ pλ = 0). A deviation in the behaviour
of Hartman number M on ∆Pλ is observed because
of the incorporation of curvature effects. Clearly, the
results for a planar channel are deduced when k is
large [41].

In Figure 3a, the axial velocity u is plotted for var-
ious values of curvature parameter k. The position of
the maximum in the profiles is a function of k [41].

Moreover, the profiles are not symmetric about r = 0.
A shift of the profiles for smaller values of k (i. e., an
increase in the curvature of channel) towards the lower
wall is noticed, and symmetry occurs for k→ ∞. The
variation in axial velocity for the pseudoplastic fluid
parameter is presented in Figure 3b. Here ξ is the ma-
terial parameter which physically measures the elastic
and viscous effects on the fluid flow. It is revealed that
the maximum in u(r) for the Newtonian fluid (ξ = 0)
lies below the maximum in u(r) for the pseudoplas-
tic fluid (ξ 6= 0). Thus we see that the velocity in the
pseudoplastic fluid is larger compared with the New-
tonian fluid. The difference in velocity between New-
tonian and non-Newtonian fluids also holds for big-
ger parameter space. Since the graphical visibility was
seen for smaller values (ξ = 0.00,0.005,0.010), so we
plotted u(r) for narrow interval of ξ parameter values.
The axial velocity distribution u for different values of
Hartman number M is shown in Figure 3c. It is found
that the velocity profile is not symmetric about the cen-
tral line of the channel due to the channel curvature.
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Fig. 6. (a) Current density versus Jz versus r for α = 0.6, ξ = 0.01, Rm = 4, M = 2.4, x = 0.6, E = 1, and θ = 2.8. (b) Current
density Jz versus r for α = 0.6, Rm = 4, M = 2.3, k = 3.5, x = 0.6, E = 1, and θ = 2.8. (c) Current density Jz versus r for
α = 0.1, ξ = 0.01, Rm = 4, k = 3.5, x = −0.2, E = 1, and θ = 1.5. (d) Current density Jz versus r for α = 0.6, β = 0.01,
k = 3.5, M = 2.3, x = 0.6, E = 1, and θ = 2.8.

The behaviour of M near the walls of the channel is
quite opposite to that of the centre of the channel. The
magnitude of velocity is a decreasing function of M at
r = 0.

The motion of a conductive fluid across the mag-
netic field generates currents, which thereby affect the
propagating field. On the other hand, the flow of an
electric current across a magnetic field is associated
with a body force, the so called Lorentz force, which
influences the fluid flow. To investigate the effects of
magnetic field characteristics under the influence of k,
ξ , and M, we plotted Figures 4a – c. It is shown that
the parabolic profiles for the magnetic force function
depict a left shift at r = 0. The magnetic force func-
tion is zero at the walls, which is in accordance with
the imposed boundary conditions. These profiles are
increasing functions of k, ξ , and M near the upper wall
of the channel.

Figures 5a – d discuss the variation of axial induced
magnetic field hx against r for different values of k, ξ ,
M, and Rm. In the half region, the induced magnetic

field is in one direction whereas in the other half it is
in the opposite direction [38]. It is evident here that
the magnitude of hx increases with k, ξ , M, and Rm.
The current density distribution Jz for different values
of k, ξ , M, and Rm is plotted in Figures 6a – c. These
plots indicate that the curves of Jz are parabolic in na-
ture and the magnitude of the current density Jz in-
creases at the centre of the channel while it decreases
near the walls by increasing k, ξ , and M. A shift in
the profiles is observed towards the lower wall. For
larger values of k, symmetry in the profiles is attained,
and the obtained results are compatible with existing
studies [34 – 36]. Physically, the balance of magnetic
advection and magnetic diffusion is described by the
magnetic Reynolds number. We see that Rm has an
increasing effect on the current density distribution
(Fig. 5d).

Streamlines represent the trajectories of fluid parti-
cles in a flow. The formation of an internally circulat-
ing bolus of fluid by the closed streamlines is known
as trapping. The streamlines are shown in order to de-
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Fig. 7. Stream lines for different values of k.

pict the variations of k on the trapping. The circulating
bolus attains symmetry about r = 0 for large values
of k. (Figs. 7a – d).

5. Concluding Remarks

The effects of curvature and induced magnetic field
on the peristaltic flow of a pseudoplastic fluid are ex-
plored; magnetic field characteristics are particularly
emphasized. The main points are given below.

• The absolute axial velocity in a pseudoplastic fluid
is larger than in a Newtonian fluid.

• The pressure rise per wavelength for a pseudoplastic
fluid is larger than for a viscous fluid.

• The tilt in the velocity profiles shows that the flow
is more towards the lower wall.

• The magnitude of induced magnetic field and cur-
rent density in a non-Newtonian fluid is much larger
compared with a viscous fluid.

• The symmetry of flow quantities such as velocity,
current density, and induced magnetic field at r = 0
is disturbed due to the curvature. When k→ ∞, the
results for a planar channel are recovered.
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