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An analytical nonlinear buckling model where the rod is assumed to be an inextensible column
and prismatic is studied. The dimensionless parameters reduce the constitutive equation to a nonlin-
ear ordinary differential equation which is solved using the Adomian decomposition method (ADM)
through Green’s function technique. The nonlinear terms can be easily handled by the use of Ado-
mian polynomials. The ADM technique allows us to obtain an approximate solution in a series form.
Results are presented graphically to study the efficiency and accuracy of the method. To the author’s
knowledge, the current paper represents a new approach to the solution of the buckling of the rod
problem. The fact that ADM solves nonlinear problems without using perturbations and small pa-
rameters can be judged as a lucid benefit of this technique over the other methods.

Key words: Adomian Decomposition Method; Adomian Polynomials; Green’s Function; Buckling
Phenomena.

1. Introduction

Buckling phenomena are widely used in wave prop-
agation in nanostructures, nanobeams, nanoarches,
nanorings, nanoplates, and nanoshells [1 – 6]. For ex-
ample, buckling drastically cooperate the structural in-
tegrity of nanostructures. Two types of analysis are
used: One of small deflections and the other of large
deflections. Mostly, the analysis is done of small de-
flections because the evolution of nanostructures after
a buckling behaviour can not be predicted in the case
of large deflection. Recently, a significant number of
nonlinear differential equations arising in the mathe-
matical buckling model have been proposed [7 – 13].
These models have been used to explain different phe-
nomena. One of these models is mentioned for the non-
local elasticity theory [13]. The original idea of stud-
ied this model is based on Eringen’s nonlocal elastic-
ity and Timoshenko’s beam model [9, 10]. The same
model was then re-examined and re-solved by Xu
et al. [13] for a buckling response. The complete di-
mensional governing equation can be found in the orig-

inal manuscript of Xu et al. [13]. Here we present and
analyze the corresponding nondimensional governing
equation and boundary conditions which can be writ-
ten as
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(1)

Various kinds of solution methods [13 – 15] were used
to handle the buckling analysis. One of these meth-
ods is the Adomian decomposition method (ADM)
proposed by Adomian [16] and further developed by
many eminent researchers [17 – 26]. ADM is very well
suited to physical problems since it does not require
unnecessary linearization, discretization or other re-
strictive methods and assumptions which may change
the problem to be solved, sometimes seriously. The
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Fig. 1 (colour online). Analytic aproximate solutions φ5: line,
φ4: circle. Parameters: µ = 0.1, δ = 0, α = 60, χ = 0 (red),
0.1 (blue), and 0.2 (black).

basic motivation of the present study is to propose
a new approach to develop an approximate solution
for the buckling phenomena equations. Inspired and
motivated by the ongoing research in this area, we
apply the ADM with the Green function technique for
solving the governing problem. The ADM is much
easier to implement as compared with the homotopy
perturbation method (HPM) where huge complexi-
ties are involved. To the best of our knowledge, it
seems to me that no attempt is available in the liter-
ature with the help of ADM through the Green func-
tion technique to solve a governing nonlinear model.
The fact that ADM solves nonlinear problems without
using perturbation theory [27 – 35] can be considered
as a clear advantage of this technique over the pertur-
bation method.

2. Description of the Method

In the beginning of the 1980’s, Adomian [16] pro-
posed a new and fruitful method (hereafter called the
Adomian decomposition method or ADM) for solv-
ing linear and nonlinear (algebraic, differential, par-
tial differential, integral, etc.) equations. It has been
shown that this method yields a rapid convergence of
the solution series to linear and nonlinear deterministic
and stochastic equations. In order to elucidate the solu-
tion procedure of the ADM through the Green function

Fig. 2 (colour online). Analytic aproximate solutions φ5: line,
φ4: circle. Parameters: µ = 0.05, δ = 0, α = 120, χ = 0 (red),
0.1 (blue), and 0.2 (black).

technique, we consider the general nonlinear differen-
tial equation

θ
′′(x)+g(x,θ) = f (x) , a≤ x≤ b ,

θ(a) = α , θ(b) = β , α,β ∈ R ,
(2)

where θ = θ(x), g(x,θ) is a linear or nonlinear func-
tion of θ , and f (x) is a continuous function defined in
the interval. We are seeking for the solution θ satisfy-
ing (2) and assume that (2) has an unique solution.

Applying the decomposition method as in [16], (2)
can be written as

Lθ = f (x)−Nθ , (3)

where L = d2

dx2 is the linear operator and Nθ = g(x,θ)
is the nonlinear operator. Consequently,

θ = h(x)+
∫ b

a
G(x,ξ )

{
f (ξ )−Nθ

}
dξ , (4)

where h(x) is the solution of Lθ = 0 with the boundary
conditions, and G(x,ξ ) is the Green function given by

G(x,ξ ) =

{
g1(x,ξ ) if a≤ ξ ≤ x≤ b ,

g2(x,ξ ) if a≤ x≤ ξ ≤ b .
(5)

The Adomian technique consists in approximating the
solution of (4) as an infinite series
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Fig. 3 (colour online). Analytic aproximate solutions φ4: line,
φ3: circle. Parameters: µ = 0.1, δ = 0, χ = 0.

θ =
∞

∑
n=0

θn , (6)

and decomposing the nonlinear operator Nθ as

Nθ =
∞

∑
n=0

An , (7)

where An are polynomials of θ0, . . . ,θn (called Ado-
mian’s polynomials [16]) given by
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1
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,

n = 0,1,2, . . . .

(8)

The proofs of the convergence of the series ∑
∞
n=0 θn

and ∑
∞
n=0 An are given in [17]. Substituting (6) and (7)

into (4) yields

∞

∑
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}
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Thus, we can identify

θ0 = h(x)+
∫ b

a
G(x,ξ ) f (ξ )dξ ,

θn+1 =−
∫ b

a
G(x,ξ )An dξ , n = 0,1,2, . . . .

(10)

Fig. 4 (colour online). Analytic aproximate solutions φ4−α:
line, φ3−α: circle. Parameters: µ = 0.1, χ = 0.

Now all components of θ can be calculated once
the An are given. We then define the n-term ap-
proximant to the solution θ by φn[θ ] = ∑

n−1
i=0 θi with

limn→∞ φn[θ ] = θ .

3. Numerical Application

In this section, we apply the Adomian decompo-
sition method through the Green function technique
for finding the approximate solution of the studied
model.

Case 1. In this case, we use the assumption

sinθ ≈ θ , cosθ ≈ 1 , tanθ ≈ θ , (11)

then (1) becomes
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Expanding and collecting the terms with the same co-
efficients, we get
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Fig. 5 (colour online). Analytic aproximate solutions φ4: line,
φ3: circle. Parameters: µ = 0.1, δ = 0, χ = 0, 0.1, 0.2.
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In view of (3), (13) can be written as
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where L = d2

dx2 is the linear operator and

N1θ = θθ
′2 , N2θ = θθ

′
θ
′′′ , N3θ = θ

′2
θ
′′ ,

N4θ = θ
2
θ
′2

θ
′′ , N5θ = θθ

′′2 (15)

are the nonlinear operators.
Consequently,

Fig. 6 (colour online). Analytic aproximate solutions φ4 −
α: line, φ3 − α: circle. Parameters: µ = 0.1, δ = 0, χ =
0, 0.1, 0.2.

θ = ax− µ2

(1−µ2δ −µ2χ2)

∫ 1

0
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(16)

where G(x,ξ ) is the Green function given by

G(x,ξ ) =

{
(x−1)ξ if 0≤ ξ ≤ x≤ 1 ,

(ξ −1)x if 0≤ x≤ ξ ≤ 1 .
(17)

Firstly, we set

N1θ = θθ
′2 = A1,n , N2θ = θθ

′
θ
′′′ = A2,n ,

N3θ = θ
′2

θ
′′ = A3,n ,

N4θ = θ
2
θ
′2

θ
′′ = A4,n ,

N5θ = θθ
′′2 = A5,n .

(18)

Substituting (6) and (18) in (16), the iterations are then
determined in the following recursive way:



Y. Khan and W. Al-Hayani · Buckling Analysis and New Analytic Approximate Solution 359

Fig. 7 (colour online). Analytic aproximate solutions φ5: line,
φ4: circle. Parameters: µ = 0.1, δ = 0.05, χ = 0, α =
30, 60, 90, 120.

θ0 = ax ,

θn+1 =− µ2
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(19)

Fig. 8 (colour online). Analytic aproximate solutions φ4: line,
φ3: circle. Parameters: µ = 0.1, δ = 1, 2, 3, χ = 0.

Fig. 9 (colour online). Analytic aproximate solutions φ4−α:
line, φ3−α: circle. Parameters: µ = 0.1, δ = 1, 2, 3, χ = 0.

That is, we use the functional iteration with analytical
integration to compute θn(x). To obtain the sequence
{θn(x)}∞

n=0, we also calculate φn(x) in ordinary form,
i. e., φn(x) = ∑

n−1
i=0 θi(x).

Case 2. In this case, we choose χ = 0, and we will not
consider the assumptions defined in (11):
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(20)

subject to the same boundary conditions defined in (1),
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Applying the ADM as in [16], (21) can be written as
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where L = d2

dx2 is the linear operator and the nonlinear
term can be decomposed as
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From (22), we have
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The first few components of the Adomian polynomials,
for example, are given by

N1θ = sinθ = B1,n , N2θ = cosθθ
′′ = B2,n ,

N3θ = sinθθ
′2 = B3,n ,

N4θ = cos−3
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It is clear from (24), that the recursive relation is
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4. Results and Discussion

Equation (1) subject to the boundary conditions is
solved analytically using the Adomian decomposition
method through the Green function technique for two
different cases. The results in the form of the differ-
ent physical parameters µ , δ , χ , and α for two dif-
ferent cases are shown in Figures 1 – 9. From Fig-
ures 1 and 2, one can easily observe that the increas-
ing value of free end slope α and dimensionless pa-
rameter χ reduces the buckling load, while the buck-
ling load increases curvedly with respect to different
values of α and χ = 0 in Figures 3 to 4. Figures 5
to 6 demonstate the similar effect for different values
of χ . The effect of α for Case 2 is shown in Fig-
ure 7. It presents a quite opposite behaviour to Fig-
ures 1 to 2, while the Figures 8 and 9 show simi-
lar behaviour for the second case as discussed in Fig-
ures 3 – 6. The buckling response becomse more note-
worthy as the parameters µ , δ , χ , and α become larger
and the magnitude of the post-buckling load remains
permanent.

5. Conclusion

We have derived an analytic-approximate solution
of a nonlinear buckling model. This particular prob-
lem has received a great deal of interest both from
the analysis and numerical communities. However, we
believe that this is the first time that an ADM so-
lution through Green’s function has been presented.
The ADM procedure is straightforward to implement
and provides only with a few terms a reliable analytic-
approximate solution. It also avoids the difficulties and
massive computational work as compared to other an-
alytical and numerical methods. The method is ap-
plied here in a direct manner without the use of lin-
earization, transformation, discretization or other re-
strictive assumptions. The analytic-approximate solu-
tion obtained by ADM are proven to be convergent
and uniformly valid. This study shows that ADM
coupled with the Green function technique suits for
other dynamics models arising in applied sciences and
engineering.



Y. Khan and W. Al-Hayani · Buckling Analysis and New Analytic Approximate Solution 361

[1] M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P.
Brooks Jr, S. Washburn, and R. Superfine, Nature 389,
582 (1997).

[2] E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science
277, 1971 (1997).

[3] C. M. Wang, Y. Y. Zhang, S. S. Ramesh, and S. Kiti-
pornchai, J. Phys. D: Appl. Phys. 39, 3904 (2006).

[4] C. Luo, A. Francis, and X. C. Liu, Microelec. Eng. 85,
339 (2008).
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