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With the help of the symbolic computation system Maple, the mapping approach, and a linear vari-
able separation method, a new exact solution of the (3 + 1)-dimensional generalized shallow water
wave (GSWW) system is derived. Based on the obtained solitary wave solution, some novel soliton
excitations are investigated.
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1. Introduction

Many dynamical problems in physics and other nat-
ural fields are usually characterized by the nonlinear
evolution of partial differential equations known as
governing equations. Searching for an analytical ex-
act solution to a nonlinear system has long been an
important and interesting topic in nonlinear science
both for physicists and mathematicians, and various
methods for obtaining exact solutions of a nonlinear
system have been proposed, for example, the bilinear
method, the standard Painlevé truncated expansion, the
method of ‘coalescence of eigenvalue’ or ‘wavenum-
bers’, the homogenous balance method, the hyper-
bolic function method, the Jacobian elliptic method,
the variable separation method, the (G′/G)-expansion
method [1 – 12], and the mapping method [13 – 15],
etc. The mapping approach is a kind of classic, effi-
cient, and well-developed method to solve nonlinear
evolution equations. The remarkable characteristic of
which is that we can have many different ansatzes and,
therefore, a large number of solutions [16 – 21]. In this
paper, with the mapping approach and a linear variable
separation approach, a new family of exact solutions
with arbitrary functions of the (3+1)-dimensional gen-
eralized shallow water wave (GSWW) system is de-
rived. Based on the derived solitary wave solution, we
study some novel soliton excitations such as elastic and
annihilation solitons.

The GSWW system is given by

uxxxy +3uxuxy +3uyuxx−uyt −uzx = 0 . (1)

The shallow water wave system was first derived
by Boiti et al. [22] as a compatibility for a ‘weak’ lax
pair. In [23], Paquin and Winternitz showed that the
symmetry algebra of a water wave system is infinite-
dimensional and has a Kac–Moody–Virasoro structure.
Some special similarity solutions are also given in [23]
by using symmetry algebra and the classical theoretical
analysis. The more general symmetry algebra, W∞, is
given in [24]. In [25], the soliton-type solutions for (1)
were constructed by using a generalized tanh algorithm
with symbolic computation. In [26], the travelling-
wave solutions of (1) expressed by hyperbolic, trigono-
metric, and rational functions were established with the
(G′/G)-expansion method. In [27], based on the Gram-
mian and Pfaffian derivative formulae, Grammian and
Pfaffian solutions of (1) are obtained.

2. Exact Solutions of the GSWW System

As is well known, to search for the solitary wave so-
lutions for a nonlinear physical model, we can apply
different approaches. One of the most efficient meth-
ods of finding soliton excitations of a physical model
is the so-called mapping approach. The basic idea of
the algorithm is as follows. For a given nonlinear par-
tial differential equation (NPDE) with the independent
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Fig. 1. Two types of soliton localized excitation for the physical quantity V given by the solution (11) with the choices (12)
and (13) at time t = 0.

variables x = (x0 = t,x1,x2, . . . ,xm) and the dependent
variable u, in the form

P(u,ut ,uxi ,uxix j , . . .) = 0 , (2)

where P is in general a polynomial function of its argu-
ments and the subscripts denote the partial derivatives,
the solution can be assumed to be in the form

u = A(x)+
n

∑
i=1

Bi(x)φ iq(x)+
Ci(x)
φ iq(x)

(3)

with

φ
′ = σ +φ

2 , (4)

where σ is a constant and the prime denotes the differ-
entiation with respect to q. To determine u explicitly,
one may substitute (3) and (4) into the given NPDE
and collect coefficients of polynomials of φ , then elim-
inate each coefficient to derive a set of partial differen-
tial equations of A, Bi, Ci, and q, and solve this system
of partial differential equations to obtain A, Bi, Ci, and
q. Finally, (4) possesses the general solution

φ =

{
−
√
−σ coth(

√
−σq) , σ < 0 ,

−
√

σ cot(
√

σq) , σ > 0 .
(5)

Substituting A, Bi, Ci, q, and (5) into (3), one can obtain
the exact solutions of the given NPDE.

Now we apply the mapping approach to (1). By the
balancing procedure, ansatz (3) becomes

u = f +gφ(q)+
h

φ(q)
, (6)

where f , g, h, and q are functions of (x,y, t) to be deter-
mined. Substituting (6) and (4) for (1) and collecting
the coefficients of the polynomials of φ , then setting
each coefficient to zero, we have

f =−1
3

∫ (
qxxxqy−3qxyqxx−qtqy−16q3

xqyσ

+3qxxyqx−qxqz

)
(qxqy)−1 dx ,

g =−2qx , h = 2qxσ

(7)

with

q = χ(x, t)+ϕ(y)+bz , (8)

where χ ≡ χ(x, t) and ϕ ≡ ϕ(y) are two arbitrary vari-
able separation functions of (x, t) and of y, and b is
an arbitrary constant. Based on the solutions of (4), we
can derive the following exact solutions of (1):

Case 1. For σ < 0, we can get the following solitary
wave solution of (1):

u1 =
1
3

∫
χtϕy−χxxxϕy +16χ3

x ϕyσ +bχx

χxϕy
dx

+2χx
√
−σ coth

(√
−σ
(
χ +ϕ +bz

))
+

2χx
√
−σ

coth
(√
−σ
(
χ +ϕ +bz

)) .

(9)

Case 2. For σ > 0, we obtain the following periodic
wave solution of (1):
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Fig. 2. Evolutional profile of two solitary waves for the solution V defined by (11) with condition (14) at different times: (a)
t =−10; (b) t =−5; (c) t = 0; (d) t = 5; (e) t = 10.

u2 =
1
3

∫
χtϕy−χxxxϕy +16χ3

x ϕyσ +bχx

χxϕy
dx

+2χx
√

σ cot
(√

σ
(
χ +ϕ +bz

))
− 2χx

√
σ

cot
(√

σ
(
χ +ϕ +bz

)) .

(10)

3. Localized Excitations of the GSWW System

In this section, we mainly discuss the solitary so-
lutions, namely Case 1. Owing to the arbitrariness of
the functions χ(x, t) and ϕ(y) included in this case, the
physical quantities u may possess rich localized struc-
tures. For simplicity in the following discussion, we
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Fig. 3. A plot of the annihilation of solitons for the solution V by (11) under the condition (15) at different times: (a) t =−3;
(b) t =−1; (c) t = 0; (d) t = 1.

merely analyze the potential u1x (σ =−1) determined
by (9), namely

V = u2x

=−1
3

(
4χ

2
x −

b
ϕy

+
χxxx

χx
− χt

χx

)
+2χxx

· coth(χ +ϕ +bz)−2χ
2
x coth2(χ +ϕ +bz)

+
2χxx

coth(χ +ϕ +bz)
− 2χx2

coth2(χ +ϕ +bz)
.

(11)

According to the solution V in (11), we first discuss
its soliton excitations. For instance, if we choose χ and
ϕ as

χ = 1+ tanh(x+ t) , ϕ = 1+ tanh(y) , (12)

we can obtain a soliton excitation for the physical
quantity V of (11) presented in Figure 1a with fixed
parameters σ =−1, b = 1, and z = 0.1 at time t = 0.

Furthermore, if we choose χ and ϕ as

χ = 1+ sech(x+ t) , ϕ = 1+ tanh(y) , (13)

we can obtain another soliton structure for the physical
quantity V of (11) presented in Figure 1b with fixed
parameters σ =−1, b = 1, and z = 0.1 at time t = 0.

The interactions between soliton solutions of inte-
grable models are usually considered to be completely
elastic. For instance, if we choose χ and ϕ as

χ = 1+ sech(x+ t)+ sech(x− t) ,
ϕ = 1+ tanh(y) ,

(14)

we can derive the time evolution of the solitary waves
for the physical quantity V as presented in Figure 2
with fixed parameters σ =−1, b = 1, z = 0.1 at differ-
ent times: (a) t =−10; (b) t =−5; (c) t = 0; (d) t = 5;
(e) t = 10. From Figure 2, one finds that the interac-
tions of the two solitary waves are completely elastic
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since their amplitudes, velocities, and wave shapes do
not undergo any change after their collision.

However, the interactions among solitons also can
be inelastic. For example, when choosing χ and ϕ in
solution (11) to be

χ = 1+ sech(x2 + t) , ϕ = 1+ tanh(y2) , (15)

we can see that the annihilation of solitons for the
physical quantity V of (11) under the condition (15)
presented in Figure 3 with fixed parameters σ = −1,
b = 0.1, and z = 0.01 at different times: (a) t =−3; (b)
t =−1; (c) t = 0; (d) t = 1. From Figure 3, we find that
the amplitude and shape of the solitons become smaller
and smaller after the interaction, finally, they reduce to
zero.

4. Summary and Discussion

In this paper, via the mapping approach and a lin-
ear variable separation method, we found new exact
solutions of the (3 + 1)-dimensional generalized shal-
low water wave system. Based on the derived solitary
wave solution, we studied the two types of soliton lo-
calized excitation, the completely elastic interactions

between two solitons and the annihilation phenomena
of solitons. Although we gave out some soliton elastic
interaction and annihilation phenomena in the (3+1)-
dimensional case, it is obvious that there are still many
significant and interesting problems to be further dis-
cussed. As the authors of [28] have pointed out in
(1+1)-dimensional cases: What are soliton elastic and
nonelastic interactions? What is the general equation
for the distribution of the energy and momentum after
soliton interaction? How can we use the soliton annihi-
lation of integrable models to investigate the observed
soliton annihilation in the experiments? These are all
pending issues to be further studied.
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