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In this paper, we consider a coupled system of Petrovsky equations in a bounded domain with
clamped boundary conditions. Due to several physical considerations, a linear damping which is
distributed everywhere in the domain under consideration appears only in the first equation whereas
no damping term is applied to the second one (this is indirect damping). Many studies show that
the solution of this kind of system has a polynomial rate of decay as time tends to infinity, but does
not have exponential decay. For four different ranges of initial energy, we show here the blow-up of
solutions and give the lifespan estimates by improving the method of Wu (Electron. J. Diff. Equ. 105,
1 (2009)) and Li et al. (Nonlin. Anal. 74, 1523 (2011)).

From the applications point of view, our results may provide some qualitative analysis and intuition
for the researchers in other fields such as engineering and mechanics when they study the concrete
models of Petrovsky type.
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1. Introduction

We consider the following coupled system of Pe-
trovsky equations in a bounded domain with clamped
boundary conditions:

utt +∆
2u+ut = Fu(u,v) , (x, t) ∈Ω × [0,T ) ,

vtt +∆
2v = Fv(u,v) , (x, t) ∈Ω × [0,T ) ,

u(x,0) = u0(x) ,ut(x,0) = u1(x) , x ∈Ω ,

v(x,0) = v0(x) ,vt(x,0) = v1(x) , x ∈Ω ,

u(x, t) = ∂ν u(x, t) = 0 , (x, t) ∈ ∂Ω × [0,T ) ,
v(x, t) = ∂ν v(x, t) = 0 , (x, t) ∈ ∂Ω × [0,T ) ,

(1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with
smooth boundary ∂Ω , ν is the unit normal vector
pointing toward the exterior of Ω , T > 0, and F : R2→
R is a C1 function given by

F(u,v) = α |u+ v|r+1 +2β |uv|
r+1

2 ,

where r ≥ 3, α > 1, and β > 0, which implies

Fu(u,v) = (r +1)
[

α |u+ v|r−1 (u+ v)

+β |u|
r−3

2 |v|
r+1

2 u

]
,

Fv(u,v) = (r +1)
[

α |u+ v|r−1 (u+ v)

+β |v|
r−3

2 |u|
r+1

2 v

]
,

uFu(u,v)+ vFv(u,v) = (r +1)F(u,v)

for all (u,v) ∈ R2 .

(2)

The physical origin of (1) lies in the study of beam
and plate, and it falls within the framework of indi-
rect damping mechanisms developed by Russell [1] in
the early nineties. What makes the problem to be dis-
cussed interesting is the fact that, due to several phys-
ical considerations, the linear damping which is dis-
tributed everywhere in the domain Ω appears only in
the first equation of problem (1) whereas no damp-
ing term is applied to the second one (this is the so-
called indirect damping, see also [2]). Indirect damp-
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mailto:wjliu@nuist.edu.cn


344 W. Liu · Blow-Up of Solutions for a System of Petrovsky Equations win an Indirect Linear Damping

ing of reversible systems occurs in many applica-
tions in engineering and mechanics. Indeed, it arises
whenever it is impossible or too expensive to damp
all the components of the state. Many studies show
that the solution of this kind of system has a poly-
nomial rate of decay as time tends to infinity, but
does not have exponential decay (see [3 – 8] and ref-
erences therein). Our main purpose in this work is to
investigate the blow-up properties of solutions of prob-
lem (1).

We should mention that the initial-boundary value
problem for Petrovsky or wave equation with linear or
nonlinear damping term has been studied by many au-
thors. For the single initial-boundary value problem

utt +∆
2u+g(ut) = β |u|r−1 u , (x, t) ∈Ω × [0,T ) ,

u(x,0) = u0(x) , ut(x,0) = u1(x) , x ∈Ω ,

u(x, t) = ∂vu(x, t) = 0 , (x, t) ∈ ∂Ω × [0,T ) ,

(3)

we refer to [9 – 12] and the references therein.
In [10], Messaoudi studied problem (3) with g(ut) =
α |ut |p−1 ut and showed that the solution blows up in
finite time if r > p and the energy is negative, while the
solution is global if p ≥ r. Then Wu and Tsai in [12]
showed that the solution is global under some condi-
tions without any relation between p and r. They also
proved the local solution blows up in finite time if r > p
and the initial energy is nonnegative. In [9], Amroun
and Benaissa proved the global existence of the solu-
tions by means of the stable set method in H2

0 (Ω) com-
bined with the Faedo–Galerkin procedure. They also
studied the asymptotic behaviour of solutions when the
nonlinear dissipative term g does not necessarily have
a polynomial growth near the origin. For other related
results of individual Petrovsky or wave equation, we
refer the reader to [13 – 18] and the references therein.
For the study of the system of nonlinear wave equa-
tions

utt −∆u+ |ut |p−1 ut = Fu(u,v) ,

vtt −∆v+ |vt |q−1 vt = Fv(u,v) ,
(4)

where p,q ≥ 1, the reader can see [19 – 25] for exam-
ples. Recently, Li et al. [26] investigated global exis-
tence, uniform decay, and blow-up of solutions for the
coupled system of Petrovsky equations with linear or
nonlinear damping terms in both equations.

In this paper, we are interested in the blow-up be-
haviour of solutions for (1) in a bounded domain. For
four different ranges of initial energy, we show the

blow-up of solutions and give the lifespan estimates
by improving the method of [25, 26]. Therefore, this
work improves an earlier work [26], in which similar
results have been established for (1) but in the pres-
ence of the damping terms in both equations. From
the applications point of view, our results may pro-
vide some qualitative analysis and intuition for the re-
searchers in other fields such as engineering and me-
chanics when they study the concrete models of Pe-
trovsky type.

Our paper is organized as follows. In Section 2, we
present some notation and state the main result. The
proof of the main result is given in Section 3.

2. Preliminaries

In this section, we present some notation and state
the main result. We use the standard Lebesgue space
Lp(Ω) and the Sobolev space H2

0 (Ω) with their usual
scalar product and norms.

We define the following functionals:

J(t) := J(u(t),v(t)) =
1
2

∫
Ω

[
|∆u|2 + |∆v|2

−2α |u+ v|r+1−4β |uv|
r+1

2

]
dx ,

(5)

E(t) =
1
2

(
‖ut(t)‖2

2 +‖vt(t)‖2
2

)
+ J(u(t),v(t))

=
1
2

∫
Ω

[
u2

t + v2
t + |∆u|2 + |∆v|2

−2α |u+ v|r+1−4β |uv|
r+1

2

]
dx ,

(6)

I(t) := I(u(t),v(t)) =
∫

Ω

[
|∆u|2 + |∆v|2− (r +1)

·α |u+ v|r+1−2(r +1)β |uv|
r+1

2

]
dx

= ‖∆u‖2
2 +‖∆v‖2

2− (r +1)
∫

Ω

F(u,v)dx .

(7)

We denote

d = inf
(u,v)∈H2

0 (Ω)×H2
0 (Ω),(u,v)6=(0,0)

sup
λ≥0

J(λ (u,v)) , (8)

and define

W1 =
{

(u,v)
∣∣∣(u,v) ∈ H2

0 (Ω)×H2
0 (Ω) ,

I(u,v) > 0

}
∪{(0,0)} ,
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W2 =
{
(u,v)

∣∣(u,v) ∈ H2
0 (Ω)×H2

0 (Ω) , I(u,v) < 0
}

,

N =
{

(u,v)
∣∣∣(u,v) ∈ H2

0 (Ω)×H2
0 (Ω) ,(u,v) 6= (0,0),

I(u,v) = 0

}
.

The structure of the functional J allows us to easily
show that (see [20])

d = inf
(u,v)∈N

J(u,v) .

We then state a local existence theorem which can
be established by combining arguments of [10, 19, 27].

Theorem 1 (Local existence). Assume that u0,v0 ∈
H2

0 (Ω), u1,v1 ∈ L2(Ω), and

3≤ r < +∞ if n = 1,2,3,4

or 3≤ r ≤ (3n−10)/(n−4) if n≥ 5 ,

then there exists a unique local solution (u,v) of (1)
defined on [0,T ), for some T > 0. In addition, the so-
lution satisfies

u,v ∈C([0,T ],H2
0 (Ω)), ut ,vt ∈C([0,T ],L2(Ω)) .

Moreover, at least one of the following statements
holds true:

1. ‖ut‖2
2 +‖vt‖2

2 +‖∆u‖2
2 +‖∆v‖2

2→ ∞ as t→ T−,

2. T = ∞.

Now we are in a position to state our main result.

Theorem 2. Assume that u0,v0 ∈ H2
0 (Ω), u1,v1 ∈

L2(Ω), and

3≤ r < +∞ if n = 1,2,3,4

or 3≤ r ≤ (3n−10)/(n−4) if n≥ 5 .

Suppose that any one of the following statements is sat-
isfied:

(i) E(0) < 0 ,

(ii) E(0) = 0 and
∫

Ω
(u0u1 + v0v1) dx > 0 ,

(iii) 0 < E(0) < d and I(u0,v0) < 0 ,

(iv) d ≤ E(0)≤Λ for

Λ = min

{
[
∫

Ω
(u0u1 + v0v1) dx]2

2
[
(T1 +1)‖u0‖2

2 +‖v0‖2
2

] , r +3
2r2(r +1)

·
[

2
∫

Ω

(u0u1+v0v1)dx−r2
(
2‖u0‖2

2+‖v0‖2
2

)]}
,

where r2 = 2
√

r +3/
(√

r +3+
√

r−1
)

and T1 is
a certain constant appearing in (31) below.

Then, the solution (u(t),v(t)) blows up at a finite
time T ∗ in the sense of

lim
t→T ∗−

{∫
Ω

(
u2 + v2) dx+

∫ t

0
‖u‖2

2 dt

}
= ∞ . (9)

In case (i),

T ∗ ≤ t0−
Y (t0)
Y ′(t0)

.

Furthermore, if Y (t0) < min
{

1,
√
− a

b

}
, we have

T ∗ ≤ t0 +
1√
−b

ln

√
− a

b√
− a

b −Y (t0)
,

where

a = κ
2Y 2+ 2

κ (t0)
[(

a′(t0)−‖u0‖2
2

)2

−8E(0)Y
−1
κ (t0)

]
> 0 , κ =

r−1
4

,

(10)

b =
(r−1)2

2
E(0) < 0 . (11)

In case (ii),

T ∗ ≤ t0 +
Y (t0)√

a
,

where a and b are defined as (10) and (11), respec-
tively.

In cases (iii) and (iv),

T ∗ ≤ Y (t0)√
a

or T ∗ ≤ t0 +2(3κ+1)/2κ

(a
b

)2+ 1
κ

· κ√
a

[
1− (1+ cY (t0))

−1/2κ
]

.

Furthermore, in case (iii)

a = κ
2Y 2+ 2

κ (t0)
[(

a′(t0)−‖u0‖2
2

)2

+
2c

1+2κ
Y
−1
κ (t0)

]
> 0 ,

(12)

b =− 2cκ2

1+2κ
, (13)

and in case (iv) a and b are defined as (10) and (11),
respectively.

Here t0 = t∗ is given by (24) in case (i), t0 = t∗ is
given by (26) in cases (iii), and t0 = 0 in case (ii)
and (iv), and Y (·) is the function defined in (31) be-
low.
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3. Blow-Up of Solutions

In this section, we shall discuss the blow-up prop-
erty of solutions for (1). Before doing this, let us give
the following lemmas that will be used later.

Lemma 1 ([23]). Let us have κ > 0 and let B(t) ∈
C2(0,∞) be a nonnegative function satisfying

B′′(t)−4(κ +1)B′(t)+4(κ +1)B(t)≥ 0 . (14)

If

B′(0) > r2B(0)+K0 (15)

with r2 = 2(κ +1)−2
√

(κ +1)κ , then B′(t) > K0 for
t > 0, where K0 is a constant.

Lemma 2 ([23]). If Y (t) is a nonincreasing function
on [t0,∞) and satisfies the differential inequality

Y ′(t)2 ≥ a+bY (t)2+ 1
κ for t ≥ t0 , (16)

where a > 0, b ∈ R, then there exists a finite time T ∗

such that

lim
t→T ∗−

Y (t) = 0 .

Upper bounds for T ∗ are estimated as follows:

(i) If b < 0, then T ∗ ≤ t0 +
1√
−b

ln

√
− a

b√
− a

b −Y (t0)
.

(ii) If b = 0, then T ∗ ≤ t0 +
Y (t0)
Y ′(t0)

.

(iii) If b > 0, then T ∗ ≤ Y (t0)√
a

or T ∗ ≤ t0 +

2(3κ+1)/2κ κc√
a

[
1− (1+ cY (t0))

−1/2κ
]
,

where c =
(

a
b

)2+ 1
κ .

Lemma 3. E(t) is a nonincreasing function for t ≥ 0
and

d
dt

E(t) =−‖ut(t)‖2
2 . (17)

Proof. Multiplying the first and the second equations
of (1) by ut and vt , respectively, integrating them over
Ω , adding the results together, and then integrating by
parts, we obtain

E(t)−E(0) =−
∫ t

0
‖ut‖2

2 dt for t ≥ 0 . (18)

Being the primitive of an integrable function, E(t) is
absolutely continuous and equality (17) is satisfied.

Lemma 4 ([9, 20, 26]). Suppose that u0,v0 ∈ H2
0 (Ω),

u1,v1 ∈ L2(Ω), and

3≤ r < +∞ if n = 1,2,3,4

or 3≤ r ≤ (3n−10)/(n−4) if n≥ 5 .

Suppose further that (u0,v0) ∈W2 and E(0) < d. Then
we have (u(t),v(t)) ∈W2 for all t ∈ [0,T ), and∫

Ω

(
|∆u|2 + |∆v|2

)
dx >

2(r +1)
r−1

d . (19)

Let

a(t) =
∫

Ω

(
u2 + v2) dx+

∫ t

0
‖u‖2

2 dt for t ≥ 0 . (20)

To prove Theorem 2, we need to introduce the fol-
lowing two lemmas by modifying and improving the
method of [25, 26].

Lemma 5. Suppose that u0,v0 ∈ H2
0 (Ω) and u1,v1 ∈

L2(Ω), and κ = r−1
4 , then we have

a′′(t)−4(κ +1)
∫

Ω

(
u2

t + v2
t

)
dx

≥ (−4−8κ)E(0)+(4+8κ)

·
∫ t

0
‖ut‖2

2 dt +4κ

(
‖4u‖2

2 +‖4v‖2
2

)
.

(21)

Proof. By (20), we have

a′(t) = 2
∫

Ω

(uut + vvt) dx+‖u‖2
2 , (22)

and

a′′(t) = 2
∫

Ω

(
u2

t + v2
t

)
dx−2

(
‖∆u‖2

2 +‖∆v‖2
2

)
(23)

+2(r +1)α ‖u+ v‖r+1
r+1 +4(r +1)β ‖uv‖

r+1
2

r+1
2

.

Then from (23), (6), and (18), we obtain (21).

Lemma 6. Under the conditions of Theorem 2, we
have a′(t) > ‖u0‖2

2 for t > t0, where t0 = t∗ is given
by (24) in case (i), t0 = t∗ is given by (26) in case (iii),
and t0 = 0 in cases (ii) and (iv).

Proof. (i) If E(0) < 0, then from (21), we have

a′(t)≥ a′(0)−4(1+2κ)E(0)t > a′(0) for t >0 .

Thus we get a′(t) > ‖u0‖2
2 for t > t∗, where

t∗ = max

{
a′(0)−‖u0‖2

2

4(1+2κ)E(0)
,0

}
. (24)
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(ii) If E(0) = 0, then from (21), we obtain a′′(t) ≥ 0
for t ≥ 0. If a′(0) > ‖u0‖2

2, then we have a′(t) >
‖u0‖2

2, t ≥ 0.
(iii) If 0 < E(0) < d and I(u0,v0) < 0, then from (21)

and by Lemma 4, we get

a′′(t)≥ (−4−8κ)E(0)+4κ

(
‖∆u‖2

2 +‖∆v‖2
2

)
≥ (4+8κ)(d−E(0)) := c > 0 . (25)

Thus, we obtain a′(t) > ‖u0‖2
2 for t > t∗, where

t∗ = max

{
‖u0‖2

2−a′(0)
c

,0

}
. (26)

(iv) For the case E(0)≥ d, we first note that

2
∫ t

0

∫
Ω

uut dxdt = ‖u‖2
2−‖u0‖2

2 . (27)

By Hölder’s inequality and Young’s inequality, we ob-
tain from (27),

‖u‖2
2 ≤ ‖u0‖2

2 +
∫ t

0
‖u‖2

2 dt +
∫ t

0
‖ut‖2

2 dt . (28)

By Hölder’s inequality and Young’s inequality again
and using (22), (20), and (28), we get

a′(t)≤ a(t)+‖u0‖2
2 +

∫
Ω

(
u2

t + v2
t

)
dx

+
∫ t

0
‖ut‖2

2 dt .
(29)

Hence by (21) and (29), we have

a′′(t)−4(κ +1)a′(t)+4(κ +1)a(t)+
[
(4+8κ)E(0)

+4(κ +1)‖u0‖2
2

]
≥ 4κ

∫ t

0
‖ut‖2

2 dt ≥ 0 .

Let

k(t) = a(t)+
(4+8κ)E(0)+4(κ +1)‖u0‖2

2

4(κ +1)
for t > 0.

Then k(t) satisfies Lemma 1. We see that if

a′(0) > r2

[
a(0)+

(4+8κ)E(0)+4(κ +1)‖u0‖2
2

4(1+κ)

]
+‖u0‖2

2 , (30)

then a′(t) > ‖u0‖2
2, t ≥ 0, where r2 is given in

Lemma 1. Moreover, (30) is equal to

E(0)≤ (1+κ)
r2(1+2κ)

[
2
∫

Ω

(u0u1 + v0v1)

− r2
(
2‖u0‖2

2 +‖v0‖2
2

)]
.

Now, we show the proof of Theorem 2.

Proof of Theorem 2. Let

Y (t) =
[
a(t)+(T1− t)‖u0‖2

2

]−κ

, t ∈ [0,T1] , (31)

where T1 > 0 is a certain constant which will be speci-
fied later. Then we get

Y ′(t) =−κ

[
a(t)+(T1− t)‖u0‖2

2

]−κ−1(
a′(t)−‖u0‖2

2

)
=−κY 1+ 1

κ (t)
(

a′(t)−‖u0‖2
2

)
, (32)

and

Y ′′(t) =−κY 1+ 2
κ (t)a′′(t)

[
a(t)+(T1− t)‖u0‖2

2

]
+κY 1+ 2

κ (t)(1+κ)
(

a′(t)−‖u0‖2
2

)2
.

We set

V (t) = a′′(t)
[
a(t)+(T1− t)‖u0‖2

2

]
− (1+κ)

(
a′(t)−‖u0‖2

2

)2
,

(33)

then

Y ′′(t) =−κY 1+ 2
κ (t)V (t) . (34)

For simplicity of calculation, we denote

Pu =
∫

Ω

u2 dx , Pv =
∫

Ω

v2 dx , Qu =
∫ t

0
‖u‖2

2 dt ,

Ru =
∫

Ω

u2
t dx , Rv =

∫
Ω

v2
t dx , Su =

∫ t

0
‖ut‖2

2 dt ,

From (23), (27), and Hölder’s inequality, we define

a′(t) = 2
∫

Ω

(uut + vvt) dx+‖u0‖2
2 +2

∫ t

0

∫
Ω

uut dxdt

≤ 2
(√

RuPu +
√

QuSu +
√

RvPv

)
+‖u0‖2

2 . (35)

For the case (i) or (ii), by (21), we have

a′′(t)≥ (−4−8κ)E(0)
+4(1+κ)(Ru +Rv +Su) .

(36)

Thus, from (33), (35), (36), and (31), we obtain

V (t)≥ [(−4−8κ)E(0)+4(1+κ)(Ru +Rv +Su)]

·Y
−1
κ (t)−4(1+κ)

(√
RuPu +

√
RvPv +

√
QuSu

)2
.
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From

a(t) =
∫

Ω

(
u2 + v2) dx+

∫ t

0
‖u‖2

2 dt = Pu +Pv +Qu

and (31), we get

V (t)≥ (−4−8κ)E(0)Y
−1
κ (t)+4(1+κ)

·
[
(Ru +Rv +Su)(T1− t)‖u0‖2

2 +Φ(t)
]

,

where

Φ(t) = (Ru +Rv +Su)(Pu +Pv +Qu)

−
(√

RuPu +
√

RvPv +
√

QuSu

)2
.

By the Schwarz inequality, we know that Φ(t) is non-
negative. Hence, we have

V (t)≥ (−4−8κ)E(0)Y
−1
κ (t), t ≥ t0 . (37)

Therefore, by (34) and (37), we get

Y ′′(t)≤ 4κ(1+2κ)E(0)Y 1+ 1
κ (t) , t ≥ t0 . (38)

By Lemma 6, we know that Y ′(t) < 0 for t ≥ t0. Multi-
plying (38) by Y ′(t) and integrating it from t0 to t, we
get

Y ′2(t)≥ a+bY 2+ 1
κ (t)

for t ≥ t0, where a, b are defined as (10) and (11), re-
spectively.

For the case (iii), we obtain from (21) and (25) that

a′′(t)≥ c+4(1+κ)(Ru +Rv +Su) .

By the steps in case (i), we get

Y ′′(t)≤−κcY 1+ 1
κ (t) , t ≥ t0 ,

and then

Y ′2(t)≥ a+bY 2+ 1
κ (t) ,

where a, b are defined as (12) and (13), respectively.
For the case (iv), by the steps in case (i), we get (37)

and (38) if and only if

E(0) <

(
a′(0)−‖u0‖2

2

)2

8
(

a(0)+T1 ‖u0‖2
2

)
=

[
∫

Ω
(u0u1 + v0v1) dx]2

2
[
(T1 +1)‖u0‖2

2 +‖v0‖2
2

] .

Therefore, by Lemma 2, there exists a finite time T ∗

such that limt→T ∗−Y (t) = 0 and the upper bound of T ∗

is estimated according to the sign of E(0). This means
that (9) holds.

Remark 1. The choice of T1 in (31) is possible pro-
vided that T1 ≥ T ∗, we refer the reader to [25] for de-
tails.

4. Concluding Remarks

In this paper, we have investigated a coupled sys-
tem of Petrovsky equations in a bounded domain with
clamped boundary conditions, the physical origin of
which lies in the study of beam and plate. Due to sev-
eral physical considerations, a linear damping which
is distributed everywhere in the domain under consid-
eration appears only in the first equation whereas no
damping term is applied to the second one (this is indi-
rect damping). Indirect damping of reversible systems
occurs in many applications in engineering and me-
chanics. Indeed, it arises whenever it is impossible or
too expensive to damp all the components of the state.
Many studies show that the solution of this kind of sys-
tem has a polynomial rate of decay as time tends to in-
finity, but does not have exponential decay. For four
different ranges of initial energy, we have showed here
the blow-up of solutions and give the lifespan estimates
by improving the method of [25, 26].

From the applications point of view, our results may
provide some qualitative analysis and intuition for the
researchers in other fields such as engineering and me-
chanics when they study the concrete models of Pe-
trovsky type.
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