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In this paper, the unsteady oscillatory flows of a generalized Burgers’ fluid in a rotating frame are
investigated. The constitutive equations of the generalized Burgers’ fluid are used in the mathemati-
cal formulation of the problem. The solutions are obtained by using the Laplace transform method.
The graphical results are displayed and discussed for various parameters of interest. It is found that
the velocity profiles reflect some interesting results for the rotation parameter and rheological fluid

parameters.
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1. Introduction

The rotating flows of non-Newtonian fluids have
paramount importance in meteorology, geophysics,
cosmical fluid dynamics, turbomachinery etc., and cur-
rently it is an area of research undergoing rapid growth
in the modern fluid mechanics. Specifically, the rotat-
ing flows are significant in the processing engineering
and geofluid mechanics where the earth Coriolis force
is considered and high velocity flows are required. The
Coriolis force in the basic field equations is considered
to be more significant in comparison to inertial forces.
The literature on the rotating flows of viscous fluids is
substantial ([1—7] and the references therein). How-
ever, such investigations are narrowed down when the
rotating flows of non-Newtonian fluids are considered.
The reason that the rotating flows have not been well
studied for non-Newtonian fluids is the difficulty of
the resultant problems. In these fluids, the governing
equations are of higher order and more complicated
in comparison to Navier—Stokes fluids. The constitu-
tive relationships between stress and rate of strain in
these fluids are complex in nature and give rise to ex-
tra terms in the arising equations [8 —17]. Therefore
in this study, we have chosen the generalized Burgers’
fluid as a non-Newtonian fluid to investigate the un-
steady rotating flows due to oscillatory motion of the
boundary.

The layout of the paper is organized as follows.
The mathematical formulation of the problem is given
in Section 2. Section 3 comprises the solution expres-
sion in the transformed plane. The results and dis-
cussion are given in Section 4, and the influence of
the emerging parameters on the velocity field is ana-
lyzed using graphs. The concluding remarks are given
in Section 5.

2. Problem Formulation

Here, we assume that the rotating unsteady flow of
an incompressible generalized Burgers’ fluid occupies
the semi-infinite non-porous space z > 0, with an infi-
nite plate coinciding with the plane z = 0. The z-axis
is taken normal to the plate. The fluid and the plate are
in state of rigid body rotation with a constant angular
velocity Q; = Qik (k is a unit vector parallel to the z-
axis). The flow in the fluid is caused by the oscillatory
motion of the plate. Under the above assumptions, the
continuity equation is identically satisfied and the mo-
mentum equations is given by [17]
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where p is the fluid density and u is the dynamic vis-
cosity; A; and A3 (< Aq), respectively, are the relax-
ation and retardation times and A, and A4 are material
constants having dimensions as the square of time and
F=u+iv.

The corresponding boundary and initial conditions
are

F(0,1) = UpH (t) cos(apt) or Upsin(mpt), t >0, (2)

F(oot)=0, t >0, 3)
0F(z,0) 9%*F(z,0
F(z,0) = gt ) _ ag ) 0, >0, )

in which Uy designates the constant plate velocity, wy
is the frequency of oscillation of the plate, and H(7) is
the Heaviside function.

Introducing the following dimensionless variables:
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IG(E,0

6(z.0)= 290
2400 ®
=3 =0, £>0.

3. Solution of the Problem

Applying the Laplace transform to (6)—(8) and
using the initial conditions (9), the boundary value
problem in the transformed (&,q)-plane is given
by
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system: 0
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In view of (11) and (12), from (14), we find that
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Fig. 1. Variation of velocity parts for various values of £2.
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Fig. 2. Variation of velocity parts for various values of ®.
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Fig. 3. Variation of velocity parts for various values of f3;.

where the subscripts ¢ and s respectively indicate the
cases for cosine and sine oscillations of the plate.

4. Results and Discussion
The closed form solutions of transient oscillatory

flows of a generalized Burgers’ fluid in a rotating frame
are obtained using the Laplace transform. The inte-
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grals involved in the inverse Laplace transform of (16)
and (17) are computed by symbolic computation soft-
ware MATHEMATICA [17 - 19]. The results are plot-
ted for various values of embedded flow parameters.
The values of these parameters are clearly pointed out
in these graphs. In order to illustrate the role of these
parameters on the real and imaginary parts of velocity,
Figures 1 —6 have been displayed. In these figures pan-
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Fig. 4. Variation of velocity parts for various values of f33.
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Fig. 5. Variation of velocity parts for various values of 7.
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Fig. 6. Variation of velocity parts for various values of y;.

els (a) depict the variation of velocity on the real part
while panels (b) indicate the variation of velocity on
the imaginary part. However, the graphical results are
only displayed for the cosine oscillations of the bound-
ary.

It is depicted from Figure 1 that increasing the rota-
tion parameter €2, the magnitude of the real part of ve-
locity and boundary layer thickness decreases whereas
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the effect is quite opposite on the imaginary part of the
velocity. The magnitude of velocity and boundary layer
thickness increases with increasing values of €2. This
is due to the fact that the Coriolis force acts as a con-
straint in the main fluid flow when the moving plate is
suddenly set into oscillation. We can say that the Cori-
olis force ended fluid flow in the primary flow direction
which corresponds to the real part of velocity, to in-
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duce cross flow and secondary flow which corresponds
to the imaginary part of velocity in the flow field. It
is found from Figure 2, that the magnitude of velocity
for both real and imaginary parts are decreasing by in-
creasing the frequency of oscillations . However, for
large values of the independent variable &, the fluctua-
tion reduces and the velocity approaches to zero.
Figures 3 and 4 are prepared to show the variation in
rotation velocity for different values of non-Newtonian
fluid parameters 3; and B3 also called the relaxation
time and retardation time, respectively, when other pa-
rameters are kept fixed. It is noted from Figure 3 that
for large values of f, the real part of velocity de-
creases whereas the magnitude of the imaginary part
of velocity first increases and then decreases. Physi-
cally, it is justified due to the fact that the relaxation
time has a reducing effect on the oscillatory flow, and
hence the real part of the velocity decreases whereas
the imaginary part first decreases and then increases
with increasing values of ;. As expected, the effect of
B3 is quite opposite to B; as shown in Figure 4. This
is due to the fact that the retardation time enhances
the flow field. The variation of 7> and 74 on the rota-
tion velocity is shown in Figures 5 and 6. We know
that A, and A4 are material constants having dimen-
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