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Approximate bound state solutions of the Dirac equation with the Hulthén plus a new generalized
ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and
the corresponding two-component wave function are calculated by solving the radial and angular
wave equations within a recently introduced shortcut of the Nikiforov–Uvarov (NU) method. The
solutions of the radial and polar angular parts of the wave function are given in terms of the Jacobi
polynomials. We use an exponential approximation in terms of the Hulthén potential parameters
to deal with the strong singular centrifugal potential term l(l + 1)r−2. Under the limiting case, the
solution can be easily reduced to the solution of the Schrödinger equation with a new ring-shaped
Hulthén potential.
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1. Introduction

The spin or pseudospin (p-spin) symmetry [1, 2] in-
vestigated in the framework of the Dirac equation is
one of the most interesting phenomena in the relativis-
tic quantum mechanics to explain different aspects for
the nucleon spectrum in nuclei. This is mainly stud-
ied for the existence of identical bands in superde-
formed nuclei in the framework of a Dirac Hamiltonian
with attractive scalar S(r) and repulsive vector V (r)
potentials [3]. The p-spin symmetry is based on the
small energy difference between single-nucleon dou-
blets with different quantum numbers and the Hamil-
tonian of nucleons moving in the relativistic mean field
produced by the interactions between nucleons. The
relativistic dynamics are described by using the Dirac
equation only [4].

Recently, Ginocchio [5] found that the p-spin sym-
metry concept in nuclei occurs when the S(r) and
V (r) potentials are nearly equal to each other in mag-
nitude but opposite in sign, i.e., S(r) ≈ V (r), and
hence their sum is a constant, i.e., Σ(r) = S(r) +

V (r) = Cps. A necessary condition for occurrence of
the p-spin symmetry in nuclei is to consider the case
Σ(r) = 0 [5 – 7]. Further, Meng et al. [8] showed that
the p-spin symmetry is exact under the condition of
dΣ(r)/dr = 0. Lisboa et al. [9] studied the general-
ized harmonic oscillator for spin-1/2 particles under
the condition Σ(r) = 0 or ∆(r) = S(r)−V (r) = 0. The
Dirac equation has been solved numerically [10, 11]
and analytically [4, 12, 13] for nucleons that are mov-
ing independently in the relativistic mean field in the
presence of the p-spin symmetric scalar and vector po-
tentials. Thus, the exact or approximate analytical so-
lution of the Dirac equation leads to the bound-state
energy spectra and spinor wave functions [14 – 25].

Over the past years, the study of exact and ap-
proximate solutions of the Schrödinger, Klein–Gordon
(KG), and Dirac wave equations with non-central po-
tentials becomes of considerable interest. For exam-
ple, a new ring-shaped (RS) potential has been in-
troduced [26] plus Coulomb potential [26], Hulthén
potential [27], modified Kratzer potential [28], and
non-harmonic oscillator potential [29]. Such calcu-
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lations with this RS potential have found applica-
tions in quantum chemistry such as the study of ring-
shaped molecules like benzene. Furthermore, the shape
forms of this potential play an important role when
studying the structure of deformed nuclei or the nu-
clear interactions. Quesne [30] obtained a new RS po-
tential by replacing the Coulomb part of the Hart-
mann potential [31] by a harmonic oscillator term.
Chen [32] exactly obtained an energy spectrum of
some non-central separable potential in r and θ us-
ing the method of supersymmetric Wentzel–Kramers–
Brillouin (WKB) approximation. Yaşuk et al. [33] ob-
tained general solutions of the Schrödinger equation
for a non-central potential by using the Nikiforov–
Uvarov (NU) method [34]. Chen et al. [35] studied
exact solutions of scattering states of the KG equa-
tion with Coulomb potential plus a new RS poten-
tial with equal mixture of scalar and vector poten-
tials. Ikhdair and Sever [36] used the polynomial so-
lution to solve a non-central potential. Zhang and
Wang [37] studied the KG with equal scalar and vec-
tor Makarov potentials by the factorization method.
Kerimov [38] studied a non-relativistic quantum scat-
tering problem for a non-central potential which be-
longs to a class of potentials exhibiting an acciden-
tal degeneracy. Berkdemir and Sever [39] investigated
the diatomic molecules subject to central potential plus
RS potential. Berkdemir and Sever [40] studied the p-
spin symmetric solution for spin-1/2 particles mov-
ing under the effect of the Kratzer potential plus an
angle-dependent potential. Yeşiltaş [41] showed that
a wide class of non-central potentials can be analyzed
via the improved picture of the NU method. Berkdemir
and Cheng [42] investigated the problem of relativis-
tic motion of a spin-1/2 particle in an exactly solv-
able potential consisting of harmonic oscillator poten-
tial plus a novel RS dependent potential. Zhang and co-
workers [43 – 45] obtained the complete solutions of
the Schrödinger and Dirac equations with a spherically
harmonic oscillatory RS potential. Ikhdair and Sever
obtained the exact solutions of the D-dimensional
Schrödinger equation with RS pseudo-harmonic po-
tential [46], modified Kratzer potential [47], and the
D-dimensional KG equation with ring-shaped pseudo-
harmonic potential [48]. Hamzavi et al. found the exact
solutions of the Dirac equation with Hartmann poten-
tial [49] and RS pseudo-harmonic oscillatory poten-
tial [50] by using the NU method. Many authors have
also studied a few non-central potentials within the su-

persymmetric quantum mechanics and point canonical
transformations [51 – 53].

The aim of this work is to investigate analytically
the bound-state solutions of the Dirac equation with
non-central Hulthén potential plus a new generalized
RS potential with extra additional parameter α from
the RS potential being used in [31]. Therefore, we
consider a non-central potential of the type V (~r) =
VH(r)+ 1

r2 VRS(θ), consisting of two parts:

VH(r) =− V0

eδ r−1
,

VRS(θ) =
α +β cos2 θ

sin2
θ

, δ =
1
a

,

(1)

where VH(r) is the Hulthén potential in which V0, δ ,
and a are the potential depth, the screening param-
eter, and the range of the Hulthén potential, respec-
tively. Further, VRS(θ) is a new RS potential iden-
tical to the RS part of the Hartmann potential [26].
Here α =−pσ2η2a2

0ε0 and β =−pσ2η2a2
0ε0, where

a0 = h̄2/me2 and ε0 = −me4/2h̄2 represent the Bohr
radius and the ground-state energy of the hydrogen
atom, respectively. Further, η , σ , and p are three di-
mensionless parameters. Generally speaking, η and σ

vary from about 1 up to 10, and p is a real parameter
with its value taken as 1. At first, to show the shape of
the potential (1), we plotted it in Figure 1 by taking the
following parameter values: V0 = 0.1 fm−1, δ = 0.1,
α = 1, and β = 10.

Fig. 1 (colour online). Plot of ring-shaped Hulthén potential.
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Secondly, in our solution, we will use a powerful
shortcut of the NU method [34] that has proven its effi-
ciency and easily handling in the treatment of problems
with second-order differential equations of the type
y′′+(τ̃/σ)y′+(σ̃/σ2)y = 0 which are usually encoun-
tered in physics such as the radial and angular parts of
the Schrödinger, KG, and Dirac equations [46 – 50].

This paper is organized as follows. In Section 2,
we present the Dirac equation for the generalized RS
Hulthén potential. Section 3 is devoted to derive the ap-
proximate bound-state energy eigenvalue equation and
the associated two-components of the wave function
consisting from radial and angular parts within a short-
cut of the NU method. In Section 4, we present the
non-relativistic limits for the RS Hulthén potential and
the Hulthén potential. We end with our concluding re-
marks in Section 5.

2. Dirac Equation for Scalar and Vector Hulthén
Plus New Ring-Shaped Potential

The Dirac equation for a particle of mass M moving
in the field of a non-central attractive scalar potential
S(~r) and repulsive vector potential V (~r) (in the rela-
tivistic units h̄ = c = 1) takes the form [54]

[~α ·~p+β (M +S(r))+V (r)]ψ(~r) = Eψ(~r) , (2)

where E is the relativistic energy of the system and
~p =−i~∇ is the three-dimensional (3D) momentum op-
erator. Further, ~α and β represent the 4×4 Dirac ma-
trices given by

~α =
(

0 σi

σi 0

)
, β =

(
I 0
0 −I

)
,

i = 1,2,3,

(3)

which are expressed in terms of the three 2× 2 Pauli
matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =
(

1 0
0 −1

)
,

(4)

and I is the 2×2 unitary matrix. In addition, the Dirac
wave function ψ(~r) can be expressed in Pauli–Dirac
representation as

ψ(~r) =
(

φ(~r)
χ(~r)

)
. (5)

Now, inserting (3) to (5) into (2) give

~σ ·~pχ(~r) = (E−M−Σ(~r))φ(~r) , (6a)

~σ ·~pφ(~r) = (E +M−∆(~r))χ(~r) , (6b)

where the sum and difference potentials are defined by

Σ(~r) = V (~r)+S(~r) and ∆(~r) = V (~r)−S(~r) , (7)

respectively. For a limiting case when S(~r) = V (~r),
then Σ(~r) = 2V (~r) and ∆(~r) = 0, (6a) and (6b) become

~σ ·~pχ(~r) = (E−M−2V (~r))φ(~r) , (8a)

χ(~r) =
~σ ·~p

E +M
φ(~r) , (8b)

respectively, where E 6= −M, which means that only
the positive energy states do exist for a finite lower-
component χ(~r) of the wave function.

Combining (8b) into (8a) and inserting the poten-
tial (1), one can obtain[
∇

2 +E2−M2 +2(E +M)

·
(

V0 e−r/a

1− e−r/a
− α +β cos2 θ

r2 sin2
θ

)]
φnlm(r,θ ,ϕ) = 0 ,

(9)

where

∇
2 =

1
r2

[
∂

∂ r

(
r2 ∂

∂ r

)
+

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2
θ

∂ 2

∂ϕ2

]
,

(10)

and
φnlm(r,θ ,ϕ) = Rnl(r)Y m

l (θ ,ϕ) ,

Rnl(r) = r−1Unl(r) ,
Y m

l (θ ,ϕ) = Θl(θ)Φm(ϕ) .
(11)

Inserting (10) and (11) into (9) and making a sep-
aration of variables, we finally arrive at the following
sets of second-order differential equations:

d2Unl(r)
dr2 +

[
E2−M2− λ

r2 +
2(E +M)V0 e−r/a

1− e−r/a

]
·Unl(r) = 0 ,

(12a)

d2
Θl(θ)
dθ 2 + cotθ

dΘl(θ)
dθ

+
[

λ − m2

sin2
θ

− 2(E +M)(α +β cos2 θ)
sin2

θ

]
Θl(θ) = 0 ,

(12b)

d2
Φm(ϕ)
dϕ2 +m2

Φm(ϕ) = 0 , (12c)
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where m2 and λ = l(l +1) are two separation constants
with l being the rotational angular momentum quan-
tum number.

The solution of (12c) is periodic and must satisfy the
periodic boundary condition, that is,

Φm(ϕ +2π) = Φm(ϕ) , (13)

which in turn gives the solution

Φm(ϕ) =
1√
2π

exp(±imϕ) ,

m = 0,1,2, . . . .

(14)

The solutions of the radial part (12a) and polar angular
part (12b) equations will be studied in the following
section.

3. Solutions of the Radial and Polar Angular Parts

3.1. Solution of the Angular Part

To obtain the energy eigenvalues and wave functions
of the polar angular part of Dirac equation (12b), we
make an appropriate change of variables, z = cos2 θ

(or z = sin2
θ), to reduce it as

Θ
′′
l (z)+

[
(1/2)− (3/2)z

z(1− z)

]
Θ
′
l (z)+

1
z2(1− z)2

·
[
− 1

4
[λ +2(E +M)β ]z2

+[λ −m2−2(E +M)α]z
]
Θl(z) = 0 ,

(15)

where the boundary conditions require that Θl(z =
0) = 0 and Θl(z = 1) = 0. The solution of (13) can be
easily found by using a shortcut of the NU method pre-
sented in Appendix A. Now, in comparing the above
equation with (A.2), we can identify the following con-
stants:

c1 =
1
2
, c2 =

3
2
, c3 = 1, A =

1
4
[λ +2(E +M)β ],

B = [λ −m2−2(E +M)α], C = 0 .

The remaining constants are thus calculated via (A.5)
as

c4 =
1
4

, c5 =−1
4

, c6 =
1+4λ +8(E +M)β

4
,

c7 =
m2−λ +2(E +M)α

4
− 1

8
, c8 =

1
16

,

c9 =
m2 +2(E +M)(α +β )

4
, c10 =

1
2

, (16)

c11 =
√

m2 +2(E +M)(α +β ) , c12 =
1
2

,

c13 =
1
2

√
m2 +2(E +M)(α +β ) .

We use the energy relation (A.10) and the parametric
coefficients given by (15) and (16) to obtain a relation-
ship between the separation constant λ and the new
non-negative angular integer ñ as

λ = l(l +1) =
(

2ñ+ m̃+
3
2

)2

−2(E +M)β − 1
4

,

(17a)

l =

√(
2ñ+ m̃+

3
2

)2

−2(E +M)β − 1
2

,

(17b)

m̃ =
√

m2 +2(E +M)(α +β ) . (17c)

Once the RS part of the potential (1) being disappeared
after setting α = β = 0 or simply letting the angu-
lar part VRS(θ) = 0, we can obtain l = 2ñ + |m|+ 1,
m = 0,1,2, . . .. Hence, the angular part VRS(θ) has sin-
gularities at angles θ = Pπ (P = 0,1,2,3, . . .) as well
as at very small and very large values of r.

Let us find the corresponding polar angular part
of the wave function. We obtain the weight function
via (A.11) as

ρ(z) = z1/2(1− z)
√

m2+2(E+M)(α+β ) , (18)

which leads to the first part of the angular wave func-
tion through (A.13) being expressed in terms of the Ja-
cobi polynomial as

yñ(z)∼ P
(1/2,
√

m2+2(E+M)(α+β ))
ñ (1−2z) . (19)

The second part of the angular wave function can be
obtained via (A.12) as

ϕ(z)∼ z1/2(1− z)
√

m2+2(E+M)(α+β )/2 , (20)

and therefore the angular part of the wave function can
be obtained via (A.14); namely, Θl(z) = ϕ(z)yñ(z) as

Θl(θ) = Añ cosθ(sinθ)
√

m2+2(E+M)(α+β )

·P
(

1/2,
√

m2+2(E+M)(α+β )
)

ñ (1−2cos2
θ) ,

(21)
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where Añ is the normalization factor. When the RS part
of potential (1) is being set to zero, i.e., α = β = 0, then

Θl(θ) = Añ cosθ sin|m| θP(1/2,|m|)
ñ (1−2cos2

θ) .

3.2. Solution of the Radial Part

We will consider the energy eigenvalue equation and
the wave function of the radial part of the Dirac equa-
tion with Hulthén potential. The exact solution is not
handy due to the existence of the centrifugal term λ/r2

in (12a). Therefore, an approximate analytical solution
has been done as

λ

r2 ≈ λν
2

[
d0 +

e−νr

(1− e−νr)2

]
,

ν =
1
a
, r� a ,

(22)

where d0 is a dimensioless constant, d0 =
1/12 [55 – 64]. With the approximation (22) and
the change of variables s = e−νr, the radial equa-
tion (12a) becomes

U ′′nl(s)+
1− s
s− s2 U ′nl(s)+

1
(s− s2)2

· [−(σ + ε)s2 +(2ε +σ −λ )s− ε]Unl(s) = 0 ,

(23)

with

− ε = a2(E2−M2)− l(l +1)d0,

σ = 2a2(E +M)V0 .
(24)

Comparing (23) with its counterpart hypergeometric
equation (A.2), we identify values of the following
constants:

c1 = 1 , c2 = 1 , c3 = 1 ,A = σ + ε,

B = 2ε +σ −λ , C = ε ,
(25)

and the remaining constants are calculated via (A.5) as

c4 = 0 , c5 =−1
2

, c6 =
1
4
[1+4(σ + ε)] ,

c7 =−2ε−σ +λ , c8 = ε ,

c9 =
1
4
(2l +1)2, c10 = 2

√
ε ,

c11 = 2l +1 , c12 =
√

ε , c13 = l +1 .

(26)

Hence, the energy eigenvalue equation can be obtained
via the relation (A.10) and values of constants given

by (24) – (26) after lengthy but straightforward manip-
ulations as

E2−M2 =
l(l +1)d0

a2 − 1
4a2

·
[

σ

(n+ l +1)
− (n+ l +1)

]2

,

or alternatively

E2−M2 =

d0

a2

[(
2ñ+ m̃+

3
2

)2

−2(E +M)β − 1
4

]
− 1

4a2

·

 2(M +E)V0a2(
n+
√(

2ñ+ m̃+ 3
2

)2−2(E +M)β + 1
2

)

−

n+

√(
2ñ+ m̃+

3
2

)2

−2(E +M)β +
1
2

2

,

(27)

where m̃ is given in (17c).
We need to solve (27) numerically taking the fol-

lowing values of the parameters for the Hulthén po-
tential: V0 = 3.4 fm−1, δ = a−1 = 0.25 fm−1, M =
5 fm−1 [55 – 58]. As shown in Table 1, (27) admits two
negatively attractive bound-state energy solutions cor-
responding to the particle and its antiparticle. We have
also shown these two solutions by studying the Hulthén
plus a new ring-shaped potential and the Hulthén po-
tential cases. As seen, the existence or absence of the
RS potential has no much effects on the energy states
of the Hulthén particles with a very narrow band spec-
trum. However, the existence of the RS potential has
a strong effect on the energy spectrum of the antipar-
ticles as they change from attractive to repulsive for
some states with a very wide band spectrum. Fur-
ther, both particle and antiparticle are trapped by the
Hulthén field as the ring-shaped potential is existing or
disappearing.

To sharpen our analysis, we have also drawn the be-
haviour of the bound-state energy with the potential
depth V0 and the screening parameter δ for the Hulthén
potential and the RS Hulthén potential as shown in Fig-
ures 2 – 5.

The variation of the energy with V0 for the RS
Hulthén potential and Hulthén potential plotted in
Figures 2 and 4, respectively, shows that energy be-
comes more negative (strongly attractive) as V0 is in-
creasing. Both particle and antiparticle are trapped by
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α = β = 0 α = β = 1m ñ n E2
n,ñ,m E1

n,ñ,m E2
n,ñ,m E1

n,ñ,m

0 0 0 −4.995583758 −4.139490168 −4.996058414 −4.720283669
1 0 0 −4.988883706 −3.351144541 −4.990126164 −4.388096150
1 0 1 −4.983219226 −3.181185632 −4.983417636 −3.949703384
1 1 0 −4.972069376 −1.450852722 −4.975125259 −3.429332733
1 1 1 −4.964591276 −1.33435789 −4.965242671 −2.851556752
2 0 0 −4.979466843 −2.494855449 −4.981810530 −3.951310489
2 0 1 −4.972286615 −2.346989231 −4.972714353 −3.431743639
2 1 0 −4.957273060 −0.642877021 −4.962026060 −2.854773363
2 1 1 −4.948594597 −0.544726664 −4.949737250 −2.243800108
2 2 0 −4.927892096 0.866047610 −4.935838511 −1.619431412
2 2 1 −4.918016190 0.933230388 −4.920319274 −0.998615904
3 0 0 −4.967330159 −1.644145559 −4.971102883 −3.433355109
3 0 1 −4.958826910 −1.517571480 −4.959607143 −2.857192280
3 1 0 −4.958826910 −1.517571480 −4.946508429 −2.247028930
3 1 1 −4.92998072 0.1758391135 −4.931796375 −1.623473548

Table 1. Bound state en-
ergy eigenvalues of the
Dirac equation in units of
fm−1 with the ring-shaped-
Hulthén potential and the
Hulthén potential cases.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
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2
, ,n n mE

1
, ,n n mE

Fig. 2 (colour online). En-
ergy behaviour of the Dirac
equation with Hulthén po-
tential plus RS potential
versus potential depth V0
for various n, ñ, and m, re-
spectively.

the Hulthén field. On the other hand, the variation
of the energy with δ for the RS Hulthén potential
and Hulthén potential plotted in Figures 3 and 5, re-
spectively, indicates that energy becomes less negative
(weakly attractive) as δ is increasing.

Let us find the corresponding radial part of the
wave function. We find the weight function via (A.11)
as

ρ(s) = s2
√

ε(1− s)2l+1 . (28)
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n n mE

n n mE

Fig. 3 (colour online). En-
ergy behaviour of the Dirac
equation with Hulthén po-
tential plus RS potential
versus screening parameter
δ = a−1 for various n, ñ,
and m, respectively.

Hence, with (28), the first part of the radial wave func-
tion can be obtained by means of the relation (A.13) in
terms of the Jacobi polynomials as

yn(s)∼ P
(2
√

ε,2l+1)
n (1−2s) . (29)

We have used the definition of the Jacobi polynomials
given by [59 – 64]

P(a,b)
n (y) =

(−1)n

n!22 (1− y)−a(1+ y)−b

dn

dyn [(1− y)a+n(1+ y)b+n] .
(30)

The second part of the radial wave function can be ob-
tained via (A.12) as

ϕ(s)∼ s
√

ε(1− s)l+1 , (31)

and thus the radial part of the wave function, Unl(s) =
ϕ(s)yn(s), is

Unl(r) = Anl(e−r/a)
√

ε(1− e−r/a)l+1

P
(2
√

ε,2l+1)
n (1−2e−r/a) ,

(32)

where the normalization constant Anl has been calcu-
lated in Appendix B.

Finally, combining (14), (21), and (32), the total
upper-component of the wave function (11) becomes

φ(~r) = Nnñm
1√
2π

cosθ(sinθ)m̃P(1/2,m̃)
ñ

(1−2cos2
θ)e±imϕ(e−r/a)

√
ε(1− e−r/a)l+1

·P(2
√

ε,2l+1)
n (1−2e−r/a) ,

(33)

where m = 0,1,2, . . ., n = 0,1,2, . . ., and recalling that

l =

√(
2ñ+ m̃+

3
2

)2

−2(E +M)β − 1
2

,

l = 0,1,2, . . .
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Fig. 4 (colour online). En-
ergy behaviour of the Dirac
equation with Hulthén po-
tential without RS potential
(α = β = 0) versus poten-
tial depth V0 for various n,
ñ, and m, respectively.

The lower-component of the wave function (5) can be
found by means of (8b) as

χ(~r) = Nnñm
1√
2π

~σ ·~p
E +M

cosθ(sinθ)m̃

·P(1/2,m̃)
ñ (1−2cos2

θ)e±imϕ(e−r/a)
√

ε

· (1− e−r/a)l+1P
(2
√

ε,2l+1)
n (1−2e−r/a),

E 6=−M.

(34)

To avoid the repetition, its worthy to note that in the
case of exact p-spin symmetry when S(~r) = −V (~r)
or Σ(~r) = S(~r)+V (~r) = 0 and ∆(~r) = V (~r)− S(~r) =
2V (~r), we found that it is necessary to perform the fol-
lowing mappings of (8a) and (8b) as [65]:

ϕ(r)→ χ(r) , χ(r)→−ϕ(r) ,
V (r)→−V (r) , E→−E ,

(35)

so to obtain the solution of the present case.

4. The Non-Relativistic Limit

Here, we consider the non-relativistic solutions for
the new generalized ring-shaped Hulthén potential and
the Hulthén potential:

4.1. A New Generalized Ring-Shaped Hulthén
Potential Case

In finding the non-relativistic solution, we let
E −M ≈ Enl and E + M ≈ 2µ . Hence, the bound
state energy formula can be easily obtained via (27)
as

Enñl =
1

2µa2

{(
N2−4µβ − 1

4

)
d0

−
[

2µV0a2

(n+ l +1)
− (n+ l +1)

2

]2
}

,

(36)



S. M. Ikhdair and M. Hamzavi · Approximate Relativistic Solutions for Ring-Shaped Hulthén Potential 287

n n mE

n n mE

Fig. 5 (colour online). En-
ergy behaviour of the Dirac
equation with Hulthén po-
tential without RS potential
(α = β = 0) versus screen-
ing parameter δ = a−1 for
various n, ñ, and m, respec-
tively.

where l and N are given by

l =−1
2

+
√

N2−4µβ , N = 2ñ+ m̃+
3
2

,

m̃ =
√

m2 +4µ(α +β ) ,
(37)

where m = 0,1,2, . . . and ñ = 0,1,2, . . . Further, the
non-relativistic wave function can be found by us-
ing (24) and (33) as

ψ(r,θ ,ϕ) = Nnñl
1√
2π

cosθ(sinθ)m̃

P(1/2,m̃)
ñ (1−2cos2

θ)e±imϕ(e−r/a)
√

κ

· (1− e−r/a)l+1P
(2
√

κ,2l+1)
n (1−2e−r/a) ,

(38)

with

κ =−2µa2Enl +
l(l +1)

12
, Enl < 0 . (39)

4.2. Hulthén Potential Case

Letting α = β = 0, (36) and (38) become

Enl =
1

2µa2 {l(l +1)d0

−
[

2µV0a2

(n+ l +1)
− (n+ l +1)

2

]2
}

,

(40)

which is identical to [66] and the wave function is writ-
ten as

ψ(r,ϕ) = Nnl
1√
2π

e±imϕ(e−r/a)
√

ε

· (1− e−r/a)l+1P
(2
√

ε,2l+1)
n (1−2e−r/a) ,

(41)

where ε is given in (39).

5. Concluding Remarks

In this work, we have investigated the approximate
bound state solutions of the Dirac equation with the
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Hulthén plus a new RS potential for any orbital l quan-
tum numbers. By making an appropriate approxima-
tion to deal with the centrifugal term, we have ob-
tained the energy eigenvalue equation and the normal-
ized two spinor components of the wave function φ(~r)
and χ(~r) expressed in terms of the Jacobi polynomi-
als. This problem is solved within the shortcut of the
NU method introduced recently in [59 – 64]. The rel-
ativistic solution can be reduced into the Schrödinger
solution under the non-relativistic limit.
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Appendix A

A Shortcut of the NU Method

The NU method is used to solve second-order differ-
ential equations with an appropriate coordinate trans-
formation s = s(r) [34],

ψ
′′
n (s)+

τ̃(s)
σ(s)

ψ
′
n(s)+

σ̃(s)
σ2(s)

ψn(s) = 0 , (A.1)

where σ(s) and σ̃(s) are polynomials, at most of sec-
ond degree, and τ̃(s) is a first-degree polynomial. To
make the application of the NU method simpler and
direct without need to check the validity of solution,
we present a shortcut for the method. So, at first, we
write the general form of the Schrödinger-like equa-
tion (A.1) in a more general form applicable to any
potential as follows [65, 67 – 71]:

ψ
′′
n (s)+

(c1− c2s)
s(1− c3s)

ψ
′
n(s)

+
(−As2 +Bs−C)

s2(1− c3s)2 ψn(s) = 0 ,

(A.2)

satisfying the wave functions

ψn(s) = ϕ(s)yn(s) . (A.3)

Comparing (A.2) with its counterpart (A.1), we obtain
the following identifications:

τ̃(s) = c1− c2s , σ(s) = s(1− c3s) ,

σ̃(s) =−As2 +Bs−C
(A.4)

Following the NU method [34], we obtain the follow-
ing necessary parameters [67, 68].
(i) Relevant constant:

c4 =
1
2
(1− c1) , c5 =

1
2
(c2−2c3) ,

c6 = c2
5 +A , c7 = 2c4c5−B ,

c8 = c2
4 +C , c9 = c3(c7 + c3c8)+ c6 ,

c10 = c1 +2c4 +2
√

c8−1 >−1 ,

c11 = 1− c1−2c4 +
2
c3

√
c9 >−1 , c3 6= 0 ,

c12 = c4 +
√

c8 > 0 ,

c13 =−c4 +
1
c3

(
√

c3− c5) > 0 , c3 6= 0 .

(A.5)

(ii) Essential polynomial functions:

π(s) = c4 + c5s− [(
√

c9 + c3
√

c8)s−
√

c8] , (A.6)

k =−(c7 +2c3c8)−2
√

c8c9 , (A.7)

τ(s) = c1 +2c4− (c2−2c5)s−2

[(
√

c9 + c3
√

c8)s−
√

c8] ,
(A.8)

τ
′(s) =−2c3−2(

√
c9 + c3

√
c8) < 0 . (A.9)

(iii) Energy equation:

c2n− (2n+1)c5 +(2n+1)(
√

c9 + c3
√

c8)
+n(n−1)c3 + c7 +2c3c8 +2

√
c8c9 = 0 .

(A.10)

(iv) Wave functions

ρ(s) = sc10(1− c3s)c11 , (A.11)

ϕ(s) = sc12(1− c3s)c13 , c12 > 0, c13 > 0 , (A.12)

yn(s) = P(c10 ,c11)
n (1−2c3s) ,

c10 >−1, c11 >−1 ,
(A.13)

ψnκ(s) = Nnκ sc12(1− c3s)c13

·P(c10,c11)
n (1−2c3s) ,

(A.14)

where P(µ,ν)
n (x), µ >−1, ν >−1, and x ∈ [−1,1], are

Jacobi polynomials with

P(a0,b0)
n (1−2s) =

(a0 +1)n

n!
· 2F1(−n,1+a0 +b0 +n;a0 +1;s) .

(A.15)

Nnκ is a normalization constant. Also, the above wave
functions can be expressed in terms of the hypergeo-
metric function as

ψnκ(s) = Nnκ sc12(1− c3s)c13

· 2F1(−n,1+ c10 + c11 +n;c10 +1;c3s) ,
(A.16)

where c12 > 0, c13 > 0, and s ∈ [0,1/c3], c3 6= 0.
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Appendix B

Calculation of the Normalization Constant

To compute the normalization constant Anl in (32),
it is easy to show with the use of Rnl(r) = r−1Unl(r),
that ∫

∞

0
|Rnl(r)|2r2 dr =

∫
∞

0
|Unl(r)|2 dr

=
∫ 1

0
|Unl(s)|2

ads
s

= 1 ,

(B.1)

where we have used the substitution s = e−r/a. Insert-
ing (32) into (B.1) and using the following definition
of the Jacobi polynomial [72]:

P(p0,w0)
n (1−2s) =

Γ (n+ p0 +1)
n!Γ (p0 +1)

· 2F1(−n, p0 +w0 +n+1;1+ p0;s) ,
(B.2)

where p0 = 2
√

ε and w0 = 2l +1, we arrive at

|Anl |2
∫ 1

0
s2
√

ε−1(1− s)2l+2

·
{

2F1
(
−n,2

√
ε +2l +2+n;1+2

√
ε;s
)}2

ds

=
1
a

(
n!Γ

(
2
√

ε +1
)

Γ
(
n+2

√
ε +1

))2

,

(B.3)

where 2F1 is the hypergeometric function. Using, the
following integral formula [73, 74]:∫ 1

0
z2λ−1(1− z)2(η+1) (B.4)

· {2F1(−n,2(λ +η +1)+n;1+2λ +1;z)}2 dz

=
(n+η +1)n!Γ (n+2η +2)Γ (2λ )Γ (2λ +1)

(n+η +λ +1)Γ (n+2λ +1)Γ (n+2λ ++2η +2)
,

η >−3
2

, λ > 0 ,

we can get the normalization constant as

Anl (B.5)

=

√
2
√

εn!
(
n+ l +

√
ε +1

)
Γ
(
n+2l +2

√
ε +2

)
a(n+ l +1)Γ (n+2l +2)Γ

(
n+2

√
ε +1

) .

The relation (B.5) can be used to compute the normal-
ization constant for n = 0,1,2, . . .. For the ground state
(n = 0), we have

A0l =

√ (
l +
√

ε +1
)

a(l +1)B
(
2
√

ε,2l +2
) , (B.6)

where

B
(
2
√

ε,2l +2
)

=
Γ (2l +2)Γ

(
1+2

√
ε
)

2
√

εΓ
(
2l +2+2

√
ε
) . (B.7)
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