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In this paper, we study an integrable coherently-coupled nonlinear Schrödinger system arising
from low birefringent fibers and weakly anisotropic media. We construct the Nth iterated Darboux
transformation (DT) in the explicit form and give a complete proof for the gauge equivalence of
the associated Lax pair. By the DT-based algorithm, we derive the N-soliton solutions which can
be uniformly represented in terms of the four-component Wronskians. We analyze the properties
of coherently coupled solitons, revealing the parametric criterion for the non-degenerate solitons to
respectively display the one- and double-hump profiles. In addition, we point out that the double-
hump solitons may have potential application in realizing the multi-level optical communication.
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1. Introduction

Coupled (or symbiotic) solitons with two or more
components (modes) [1] have been experimentally ob-
served in the AlGaAs planar wave guides [2], birefrin-
gent optical fibers [3], photorefractive materials [4],
and fiber laser resonators [5]. In the Kerr or Kerr-like
media, the co-propagation of two optical fields is usu-
ally governed by the coupled nonlinear Schrödinger
(NLS) system [6],

iq j,z +q j,tt +2
(
|q j|2 + |q3− j|2

)
q j = 0

( j = 1,2) ,
(1)

which is also known as the Manakov system [7]. Equa-
tion (1) is said to be incoherently because the cou-
pling is phase insensitive [8]. One of the most attrac-
tive properties associated with (1) is the Manakov soli-
ton collision [3, 9 – 19]. Due to the intensity-coupling
structure in (1), the collisions of the Manakov solitons
with the internal degrees of freedom are more compli-
cated than those for the scalar ones [9 – 14]. Depending

on the pre-collision soliton parameters, (1) can exhibit
the shape-changing collisions along with energy redis-
tribution between two components, as well as shape-
preserving collisions without energy transfer between
two components [9 – 14]. Such two kinds of collisions
are both considered to be elastic in the sense that the
total energy of each coupled soliton is conserved [14].
It should be mentioned that the shape-changing colli-
sions have been experimentally observed for the spatial
coupled solitons in the Kerr-like media [15] and tem-
poral ones in the linearly birefringent optical fibers [3].
More importantly, the Manakov soliton collisions have
brought about the potential applications in implement-
ing the all-optical digital computation [16, 17] and de-
signing the ‘solitonets’ which are complex networks
made up of interacting fields [18, 19].

In low birefringent fibers or weakly anisotropic me-
dia, one has to take into account the coherent coupling
between two optical fields (that is, the coupling is de-
pendent on relative phases of the interacting fields [8]).
In this case, the propagation of two optical fields in
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a Kerr-type nonlinear medium is described by the fol-
lowing coherently-coupled NLS system [20, 21]:

iq j,z +q j,tt +2
(
|q j|2 +2 |q3− j|2

)
q j−2 q̄ jq

2
3− j = 0

( j = 1,2) ,
(2)

where the bar means complex conjugate, t represents
the retarded time for the temporal case or transverse
direction for the spatial case, z the propagation direc-
tion, q j (j=1,2) are slowly varying envelopes of two in-
teracting optical fields, the terms |q j|2q j, |q3− j|2q j and
q̄ jq2

3− j are responsible for the self-phase modulation,
cross-phase modulation, and coherent coupling for the
energy exchange between two fields, respectively.

As an integrable model [21], (2) governs the prop-
agation of optical beams in nonlinear Kerr media
with linear optical activity and cubic anisotropy [20],
and the trapping of two orthogonally polarized opti-
cal pulses in an isotropic medium with the three com-
ponents χ

(3)
xxyy, χ

(3)
xyxy, and χ

(3)
xyyx of the third-order sus-

ceptibility tensor χ(3) subject to the relation χ
(3)
xxyy +

χ
(3)
xyxy = −2 χ

(3)
xyyx [21]. It has been shown that (2) ad-

mits degenerate and non-degenerate solitons, where
the former is of the usual sech profile [22 – 25], while
the latter contains more free parameters and can dis-
play both the one- and double-hump profiles [24 – 27].
In the optical communication lines, the binary data
‘1’ and ‘0’ can be respectively represented by the
presence and absence of an optical soliton, and thus
the proximity of individual solitons determines the
bit rate of a fiber communication system [6]. As
a kind of complex objects formed by the superpo-
sition of two fundamental solitons, the double-hump
solitons may be appropriate candidates for the multi-
level communication in the birefringent or two-mode
fibers [28].

In this paper, we will study (2) from the following
three aspects: (i) Authors of [26, 27] have constructed
the once-iterated DT and given the general scheme of
Nth iterated DT. However, the explicit form of the Nth
iterated DT as well as its rigorous proof was absent
in [26, 27], and the uniform determinantal representa-
tion of N-soliton solutions has also not been obtained.
In the way of [29], we will explicitly construct the
Nth iterated DT for (2) and represent the general N-
soliton solutions in terms of the four-component Wron-
skians. (ii) To our knowledge, the parametric condi-
tions under which the one- and double-hump solitons
can be respectively generated are still uncovered. Via

the extreme value analysis, we will study the properties
of coherently coupled solitons in (2). (iii) The shape-
changing collisions of coupled solitons have potential
applications in virtual digital computation [16, 17] and
all-optical switching [30]. Authors of [24, 25] have re-
ported the shape-changing collisions between degen-
erate and non-degenerate solitons. We will explore
whether such nontrivial collisions can occur between
two degenerate (or non-degenerate) solitons.

2. Nth Iterated Darboux Transformation

In this section, we will construct the Nth iterated DT
in the explicit form for (2) and give a complete proof
for the gauge equivalence of the Lax pair associated
with (2).

In the frame of the 4× 4 Ablowitz–Kaup–Newell–
Segur inverse scattering formulation [31], the Lax pair
of (2) takes the form [21]

Ψt = U(λ )Ψ = (λ U (I) +U (II))Ψ ,

Ψz = V (λ )Ψ = (λ 2 V (I) +λ V (II) +V (III))Ψ ,
(3)

with

U (I) = i

(
−I 0
0 I

)
, U (II) =

(
0 Q
−Q† 0

)
,

V (I) = 2U (I), V (II) = 2U (II),

V (III) = i

(
QQ† Qt

Q†
t −Q†Q

)
, Q =

(
q1 q2
−q2 q1

)
,

where I is the 2×2 unit matrix, Ψ = (ψ1,ψ2,ψ3,ψ4)T

(the superscript T signifies the vector transpose) is the
four-dimensional vector eigenfunction, λ is the spec-
tral parameter, and the compatibility condition Uz(λ )−
Vt(λ )+ [U(λ ), V (λ ) ] = 0 is exactly equivalent to (2).

We assume the Nth iterated eigenfunction transfor-
mation for Lax pair (3) be of the form

ΨN = TN(λ )Ψ , (4)

in which ΨN = (ψ1N ,ψ2N ,ψ3N ,ψ4N)T is the Nth it-
erated eigenfunction that satisfies ΨN,t = UN(λ ) ΨN

and ΨN,z = VN(λ )ΨN with UN(λ ) and VN(λ ) being the
same as U(λ ) and V (λ ) except that q1 and q2 are re-
spectively replaced by the Nth iterated potentials q1N

and q2N , and TN(λ ) is the undetermined Nth iterated
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Darboux matrix

TN(λ ) =


A11(λ ) A12(λ ) B11(λ ) B12(λ )
A21(λ ) A22(λ ) B21(λ ) B22(λ )
C11(λ ) C12(λ ) D11(λ ) D12(λ )
C21(λ ) C22(λ ) C21(λ ) D22(λ )

 (5)

with

Ai j(λ ) = (−iλ )N
δi j−

N

∑
n=1

a(n)
i j (−iλ )n−1

(1≤ i, j ≤ 2) ,

(6)

Bi j(λ ) = −
N

∑
n=1

b(n)
i j (iλ )n−1 (1≤ i, j ≤ 2) , (7)

Ci j(λ ) = −
N

∑
n=1

c(n)
i j (−iλ )n−1 (1≤ i, j ≤ 2) , (8)

Di j(λ ) = (−iλ )N
δi j−

N

∑
n=1

d(n)
i j (iλ )n−1

(1≤ i, j ≤ 2) ,

(9)

where δi j is the Kronecker delta function, a(n)
i j , b(n)

i j ,

c(n)
i j , and d(n)

i j (1≤ i, j≤ 2; 1≤ n≤N) are the functions
to be determined.

Note that if Ψk =
(
ek, fk,gk,hk

)T
satisfies Lax

pair (3) with λ = λk (1 ≤ k ≤ N), then Ψ ′k =(
fk,−ek,hk,−gk

)T
is also a solution of Lax pair (3)

with λ = λk, and Φk =
(
− ḡk, h̄k, ēk,− f̄k

)T
and Φ ′k =(

h̄k, ḡk,− f̄k, −ēk
)T

are the solutions of Lax pair (3)
with λ = λ̄k [26, 27]. On the other hand, {Ψk}N

k=1,
{Ψ ′k}N

k=1, {Φk}N
k=1, and {Φ ′k}N

k=1 are four sets of
linearly-independent solutions. Hence, the functions
a(n)

i j , b(n)
i j , c(n)

i j , and d(n)
i j (1≤ i, j≤ 2; 1≤ n≤N) can be

uniquely determined by requiring that

TN(λk)Ψk = 0 (1≤ k ≤ N) , (10a)

TN(λk)Ψ ′k = 0 (1≤ k ≤ N) , (10b)

TN(λ̄k)Φk = 0 (1≤ k ≤ N) , (10c)

TN(λ̄k)Φ ′k = 0 (1≤ k ≤ N) . (10d)

For convenience of calculating a(n)
i j , b(n)

i j , c(n)
i j , and

d(n)
i j (1 ≤ i, j ≤ 2; 1 ≤ n ≤ N) from (10a) – (10d) via

Cramer’s rule, we introduce the following matrices and

vectors:

EM =

e1 · · · (−iλ1)M−1e1
...

. . .
...

eN · · · (−iλN )M−1eN

 ,

FM =

 f1 · · · (−iλ1)M−1 f1
...

. . .
...

fN · · · (−iλN )M−1 fN

 ,

(11)

GM =

g1 · · · (iλ1)M−1g1
...

. . .
...

gN · · · (iλN )M−1gN

 ,

HM =

h1 · · · (iλ1)M−1h1
...

. . .
...

hN · · · (iλN )M−1hN

 ,

(12)

e =
[
(−iλ1)Ne1, . . .,(−iλN )NeN

]
,

f =
[
(−iλ1)N f1, . . .,(−iλN )N fN

]
,

(13)

g =
[
(iλ1)Ng1, . . .,(iλN )NgN

]
,

h =
[
(iλ1)Nh1, . . .,(iλN )NhN

]
,

(14)

ai j =
(
a(1)

i j , . . .,a(N)
i j

)
,

bi j =
(
b(1)

i j , . . .,b(N)
i j

)
,

(15)

ci j =
(
c(1)

i j , . . .,c(N)
i j

)
,

di j =
(
d(1)

i j , . . .,d(N)
i j

)
.

(16)

Hereby, (10a) – (10d), with the change of the order of
equations, can be written in the matrix form

Aτ(a11,a12,b11,b12)T = (e, f,−ḡ, h̄)T , (17a)

Aτ(a21,a22,b21,b22)T = (f,−e, h̄, ḡ)T , (17b)

Aτ(c11,c12,d11,d12)T =

(−1)N(g,h, ē,−f̄)T ,
(17c)

Aτ(c21,c22,d21,d22)T =

(−1)N(h,−g,−f̄,−ē)T ,
(17d)

with

Aτ =


EN FN GN HN

FN −EN HN −GN

−ḠN H̄N ĒN −F̄N

H̄N ḠN −F̄N −ĒN

 . (18)
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By Cramer’s rule, one can obtain from (17a) – (17d)
that

b(N)
11 =

−χ11

τ
, b(N)

12 =
(−1)N−1χ12

τ
, (19)

b(N)
21 =

(−1)N−1χ21

τ
, b(N)

22 =
−χ22

τ
, (20)

c(N)
11 =

(−1)N χ ′11

τ
, c(N)

12 =
χ ′12

τ
, (21)

c(N)
21 =

χ ′21

τ
, c(N)

22 =
(−1)N χ ′22

τ
, (22)

where τ = |Aτ |; χi j and χ ′i j (1 ≤ i, j ≤ 2) are the fol-
lowing determinants:

χ11 =

∣∣∣∣∣∣∣∣
EN+1 FN GN−1 HN

FN+1 −EN HN−1 −GN

−ḠN+1 H̄N ĒN−1 −F̄N

H̄N+1 ḠN −F̄N−1 −ĒN

∣∣∣∣∣∣∣∣ ,

χ12 =

∣∣∣∣∣∣∣∣
EN+1 FN GN HN−1

FN+1 −EN HN −GN−1
−ḠN+1 H̄N ĒN −F̄N−1
H̄N+1 ḠN −F̄N −ĒN−1

∣∣∣∣∣∣∣∣ ,
(23)

χ21 =

∣∣∣∣∣∣∣∣
EN FN+1 GN−1 HN

FN −EN+1 HN−1 −GN

−ḠN H̄N+1 ĒN−1 −F̄N

H̄N ḠN+1 −F̄N−1 −ĒN

∣∣∣∣∣∣∣∣ ,

χ22 =

∣∣∣∣∣∣∣∣
EN FN+1 GN HN−1
FN −EN+1 HN −GN−1
−ḠN H̄N+1 ĒN −F̄N−1
H̄N ḠN+1 −F̄N −ĒN−1

∣∣∣∣∣∣∣∣ ,
(24)

χ
′
11 =

∣∣∣∣∣∣∣∣
EN−1 FN GN+1 HN

FN−1 −EN HN+1 −GN

−ḠN−1 H̄N ĒN+1 −F̄N

H̄N−1 ḠN −F̄N+1 −ĒN

∣∣∣∣∣∣∣∣ ,

χ
′
12 =

∣∣∣∣∣∣∣∣
EN FN−1 GN+1 HN

FN −EN−1 HN+1 −GN

−ḠN H̄N−1 ĒN+1 −F̄N

H̄N ḠN−1 −F̄N+1 −ĒN

∣∣∣∣∣∣∣∣ ,
(25)

χ
′
21 =

∣∣∣∣∣∣∣∣
EN−1 FN GN HN+1
FN−1 −EN HN −GN+1
−ḠN−1 H̄N ĒN −F̄N+1
H̄N−1 ḠN −F̄N −ĒN+1

∣∣∣∣∣∣∣∣ ,

χ
′
22 =

∣∣∣∣∣∣∣∣
EN FN−1 GN HN+1
FN −EN−1 HN −GN+1
−ḠN H̄N−1 ĒN −F̄N+1
H̄N ḠN−1 −F̄N −ĒN+1

∣∣∣∣∣∣∣∣ .
(26)

To verify the form-invariance of Lax pair (3), we
need to prove that

TN,t(λ )+TN(λ )U(λ ) = UN(λ )TN(λ ) , (27a)

TN,z(λ )+TN(λ )V (λ ) = VN(λ )TN(λ ) (27b)

are satisfied with the Darboux matrix TN(λ ) given
by (5), in which a(n)

i j , b(n)
i j , c(n)

i j , and d(n)
i j (1 ≤ i, j ≤ 2;

1 ≤ n ≤ N) are determined by (17a) – (17d). Based on
Lemmas 1 – 3 (see Appendix), we can arrive at the fol-
lowing proposition:

Proposition 1. Suppose that
(
ek, fk,gk,hk

)T
is the so-

lution of Lax pair (3) with λ = λk (1 ≤ k ≤ N). Then,
the Darboux matrix TN(λ ) in (5) obeys the condi-
tions in (27a) and (27b), provided that a(n)

i j , b(n)
i j , c(n)

i j ,

and d(n)
i j (1 ≤ i, j ≤ 2; 1 ≤ n ≤ N) are determined

by (17a) – (17d), and the Nth iterated potential trans-
formations are given by

q1N = q1 +2(−1)N−1b(N)
11 ,

q2N = q2 +2(−1)N−1b(N)
12 .

(28)

Proof. We equivalently prove that the Darboux matrix
TN(λ ) in (5) obeys

UN(λ )det TN(λ ) =
[TN,t(λ )+TN(λ )U(λ )]T ∗N (λ ) ,

(29a)

VN(λ )det TN(λ ) =
[TN,z(λ )+TN(λ )V (λ )]T ∗N (λ ) ,

(29b)

where T ∗N (λ ) is the adjoint matrix of TN(λ ). Let us
define that [uhl(λ )]4×4 = [TN,t(λ )+TN(λ )U(λ )]T ∗N (λ )
and [vhl(λ )]4×4 = [TN,z(λ )+TN(λ )V (λ )]T ∗N (λ ).

By calculation, we have

deg[uhh(λ )] = 4N +1,

deg[vhh(λ )] = 4N +2 (1≤ h≤ 4),
deg[uhl(λ )] = 4N,

deg[vhl(λ )] = 4N +1 (1≤ h, l ≤ 4; h 6= l) ,

where deg[ f (λ )] represents the degree of the polyno-
mial f (λ ). On the other hand, Lemmas 1 and 2 imply
that uhl(λ ) and vhl(λ ) (1≤ h, l ≤ 4) can be exactly di-
vided by det TN(λ ). That is to say, the matrices UN(λ )
and VN(λ ) are of the form

UN(λ ) = λ U (I)
N +U (II)

N ,

VN(λ ) = λ
2 V (I)

N +λ V (II)
N +V (III)

N .
(30)
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Substituting (30) into (29a) and (29b), and compar-
ing the coefficients of λ 4N+1 and λ 4N in (29a) and
those of λ 4N+2, λ 4N+1 and λ 4N in (29b), we find that
U (I)

N = U (I), V (I)
N = V (I), and U (II)

N , V (II)
N , and V (III)

N have
the same form as U (II), V (II), and V (III) under the fol-
lowing conditions:

q1N = q1 +2(−1)N−1b(N)
11 ,

q2N = q2 +2(−1)N−1b(N)
12 ,

(31)

q1N = q1 +2(−1)N−1b(N)
22 ,

q2N = q2−2(−1)N−1b(N)
21 ,

(32)

q̄1N = q̄1 +2c(N)
11 , q̄2N = q̄2−2c(N)

12 , (33)

q̄1N = q̄1 +2c(N)
22 , q̄2N = q̄2 +2c(N)

21 , (34)

which can be reduced to (28) by virtue of the rela-
tions (A.2a) – (A.2d) in Lemma 3.

As suggested by Proposition 1, the Darboux ma-
trix TN(λ ) assures that the new eigenfunction ΨN =
TN(λ )Ψ also satisfies Lax pair (3) for the new poten-
tials q1N and q2N in (28). That is to say, the compat-
ibility condition ΨN,tz = ΨN,zt yields the same (2) ex-
cept for q1N and q2N instead of q1 and q2, respectively.
Therefore, for a given set of linearly-independent so-
lutions {Ψk,Ψ

′
k ,Φk,Φ

′
k}N

k=1 of Lax pair (3), the eigen-
function transformation (4) and potential transforma-
tions (28) constitute the Nth iterated DT: (Ψ ,q1,q2)→

(ΨN ,q1N ,q2N) of (2), where the Darboux matrix TN(λ )
is determined by (17a) – (17d).

3. Soliton Solutions in Terms of the
Four-Component Wronskians

In this section, we will derive the four-component
Wronskian representation of the N-soliton solutions
to (2) by the above Nth iterated DT algorithm start-
ing from q1 = q2 = 0. On this basis, we will find the
parametric conditions for the generation of one- and
double-hump solitons, and analyze the collisions of de-
generate and non-degenerate coupled solitons in (2).
For convenience, we use the subscripts R and I to rep-
resent the real and imaginary parts, respectively.

For a given set of complex parameters {λk}N
k=1

(λk 6= λl ), we solve Lax pair (3) with q1 = q2 = 0 and
λ = λk, obtaining(
ek, fk,gk,hk

)T =
(
αkeθk ,βkeθk ,γk e−θk ,δk e−θk

)T

(1≤ k ≤ N) ,
(35)

where the phase θk =−iλkt−2iλ 2
k z; αk, βk, γk, and δk

are complex constants. Substitution of (35) into (28)
gives the four-component Wronskian solutions to (2)
as follows:

q1N = 2(−1)N χ11

τ
, q2N = 2

χ12

τ
, (36)

with

χ11 =

∣∣∣∣∣∣∣∣
Λ1Θ+K+,N+1 Λ2Θ+K+,N Λ3Θ−K−,N−1 Λ4Θ−K−,N

Λ2Θ+K+,N+1 −Λ1Θ+K+,N Λ4Θ−K−,N−1 −Λ3Θ−K−,N

−Λ ∗3 Θ ∗−K∗−,N+1 Λ ∗4 Θ ∗−K∗−,N Λ ∗1 Θ ∗+K∗+,N−1 −Λ ∗2 Θ ∗+K∗+,N
Λ ∗4 Θ ∗−K∗−,N+1 −Λ ∗3 Θ ∗−K∗−,N −Λ ∗2 Θ ∗+K∗+,N−1 −Λ ∗1 Θ ∗+K∗+,N

∣∣∣∣∣∣∣∣ , (37)

χ12 =

∣∣∣∣∣∣∣∣
Λ1Θ+K+,N+1 Λ2Θ+K+,N Λ3Θ−K−,N Λ4Θ−K−,N−1
Λ2Θ+K+,N+1 −Λ1Θ+K+,N Λ4Θ−K−,N −Λ3Θ−K−,N−1
−Λ ∗3 Θ ∗−K∗−,N+1 Λ ∗4 Θ ∗−K∗−,N Λ ∗1 Θ ∗+K∗+,N −Λ ∗2 Θ ∗+K∗+,N−1
Λ ∗4 Θ ∗−K∗−,N+1 −Λ ∗3 Θ ∗−K∗−,N −Λ ∗2 Θ ∗+K∗+,N −Λ ∗1 Θ ∗+K∗+,N−1

∣∣∣∣∣∣∣∣ , (38)

τ =

∣∣∣∣∣∣∣∣
Λ1Θ+K+,N Λ2Θ+K+,N Λ3Θ−K−,N Λ4Θ−K−,N

Λ2Θ+K+,N −Λ1Θ+K+,N Λ4Θ−K−,N −Λ3Θ−K−,N

−Λ ∗3 Θ ∗−K∗−,N Λ ∗4 Θ ∗−K∗−,N Λ ∗1 Θ ∗+K∗+,N −Λ ∗2 Θ ∗+K∗+,N
Λ ∗4 Θ ∗−K∗−,N −Λ ∗3 Θ ∗−K∗−,N −Λ ∗2 Θ ∗+K∗+,N −Λ ∗1 Θ ∗+K∗+,N

∣∣∣∣∣∣∣∣ , (39)

where Λ1 = diag(α1, . . .,αN ), Λ2 = diag(β1, . . .,βN ),
Λ3 = diag(γ1, . . .,γN ), Λ4 = diag(δ1, . . .,δN ), Θ+ =
diag

(
eθ1 , . . .,eθN

)
, Θ−= diag

(
e−θ1 , . . ., e−θN

)
, K+,M =

[
(−iλn)m−1

]
N×M , K−,M =

[
(iλn)m−1

]
N×M (M = N −

1,N,N + 1). Note from Lemma 3 that τ is a real
function, and χi j and χ ′i j (1 ≤ i, j ≤ 2) obey the
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relations:

χ̄11 = χ
′
11 , χ̄12 = χ

′
21 , χ̄21 = χ

′
12 , χ̄22 = χ

′
22 . (40)

On the other hand, via the Laplace expansion tech-
nique, we can obtain the following four-component
Wronskian identity:

τ τtt − τ
2
t

= 4(χ11χ
′
11 + χ12χ

′
21 + χ21χ

′
12 + χ22χ

′
22) .

(41)

Combining (40) and (41), we have

2(|q1N |2 + |q2N |2)

=
4(χ11χ̄11 + χ12χ̄12 + χ21χ̄21 + χ22χ̄22)

τ2

=
τ τtt − τ2

t

τ2 ,

(42)

which implies that the function τ has no zeros in the
tz-plane unless αk = βk = γk = δk = 0 for all 1 ≤
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q1 2

4 2 0 2 4
t

1

2
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4

q1 2

4 2 0 2 4
t

1
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4

q1 2

(a) (b)

= 1.15
Ξ1

|μ1ν1| ≈ 2.02

(c)

= 1.085928 Ξ1
|μ1ν1| ≈ 3.00β1I β1I β1I= −1.25 Ξ1

|μ1ν1| ≈ 1.43

Fig. 1. Non-degenerate one-hump solitons for q1 via (45) transverse at z = 0.45, with the parameters chosen as β1 =−0.05+
β1I i, γ1 = 0.01+0.01i, δ1 = 0.01−0.02i, and λ1 =−1+ i.

6 3 0 3 6
t

1

2

q1 2

6 3 0 3 6
t

1

2

q1 2

5 5 15 25 35
t

1
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q1 2

(a)

β1R = 0.2 Ξ1
|μ1ν1| ≈ 11.26

(b)

β1R = 0.004 Ξ1
|μ1ν1| ≈ 559.02

(c)

β1R = 4×10−27 Ξ1
|μ1ν1| ≈ 5.59×1026

Fig. 2. Non-degenerate double-hump solitons for q1 via (45) transverse at z = 0, with the parameters chosen as β1 = β1R + i,
γ1 = −0.1−0.1i, δ1 = −0.1, and λ1 = −1 + i. The distance between two humps are respectively as follows: (a) d1 ≈ 1.47;
(b) d1 ≈ 3.51; (c) d1 ≈ 31.14.

k ≤ N. Therefore, we can safely say that (36) together
with (37) – (39) represent the N-soliton solutions to (2)
if αk, βk, γk, and δk are not all equal to zero. As re-
marked in [11 – 13], we can without loss of general-
ity take αk = 1 for 1 ≤ k ≤ N. That is to say, the N-
soliton solutions to (2) are in general characterized by
4N complex parameters {βk,γk,δk,λk}N

k=1, which is
greater than the number of those obtained by the non-
standard Hirota method in [24, 25].

With N = 1, (36) imply the following three families
of one-soliton solutions:(

q1
q2

)
=

λ1I µ1eθ1−θ̄1

|µ1 κ1|
sech

(
ξ1 + ln

|µ1|
2 |κ1|

)(
κ̄1
κ̄2

)
(γ1 =± iδ1) ,

(43)

(
q1
q2

)
=

λ1I ν̄1eθ1−θ̄1

|ν1 κ1|
sech

(
ξ1 + ln

2 |κ1|
|ν1|

)(
κ1
κ2

)
(β1 =± i) ,

(44)
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q1
q2

)
=

λ1Ieθ1−θ̄1

|µ1 ν1|cosh2
(
ξ1 + ln

√
|µ1|
|ν1|
)
+Ξ1−|µ1 ν1|

·

[
e−ξ1

(
ν̄1κ1− |µ1ν1|

µ̄1
κ̄1

ν̄1κ2− |µ1ν1|
µ̄1

κ̄2

)

+2 µ1

√
|ν1|
|µ1|

cosh

(
ξ1 + ln

√
|µ1|
|ν1|

)

·
(

κ̄1
κ̄2

)]
(β1 6=± i, γ1 6=± iδ1) ,

(45)

with

µ1 = 1+β
2
1 , ν1 = γ

2
1 +δ

2
1 , κ1 = γ1 +β1δ1,

κ2 = δ1−β1γ1, ξ1 = θ1 + θ̄1, Ξ1 =
(
β1− β̄1

)
·
(
δ1γ̄1− γ1δ̄1

)
+(1+ |β1|2)(|γ1|2 + |δ1|2) .

Solutions (43) and (44) are both degenerate in the sense
that they represent only the one-hump solitons. In both
the two cases, the components q1 and q2 have the same
intensities. Solution (45) is non-degenerate because it
could describe either the one- or double-hump soliton,
depending on the choice of parameters.

In order to figure out the dependence of the soliton
profiles on the parameters in (45), we take the deriva-
tives of |q j|2 ( j = 1,2) with respect to ξ1, giving that

∂ |q j|2

∂ξ1
=

32λ 2
1I e2ξ1

(
|µ1|2 e4ξ1 −|ν1|2

)(
|µ1|2 e4ξ1 +2Ξ1 e2ξ1 + |ν1|2

)3

·
[
|κ j|2|µ1|2 e4ξ1 + |κ j|2|ν1|2 +2

(
µ1ν1κ̄

2
j

+ µ̄1ν̄1κ
2
j −|κ j|2Ξ1

)
e2ξ1

]
( j = 1,2) ,

(46)

which suggests that the maxima of |q j|2 are related to
∆ j ( j = 1,2) defined by

∆1 = κ
2
1

(
δ̄

2
1 + β̄

2
1 γ̄

2
1

)
+ κ̄

2
1

(
δ

2
1 +β

2
1 γ

2
1

)
+
(
β1γ̄1δ1− β̄1γ1δ̄1

)2
+
(
|γ1|2−|β1|2|δ1|2

)2
,

(47)

∆2 = κ
2
2

(
γ̄

2
1 + β̄

2
1 δ̄

2
1

)
+ κ̄

2
2

(
γ

2
1 +β

2
1 δ

2
1

)
+
(
β1δ̄1γ1− β̄1δ1γ̄1

)2
+
(
|δ1|2−|β1|2|γ1|2

)2
.

(48)

For the case ∆ j ≤ 0, it is seen from (46) that |q j|2 has
only one maximum

|q j|2max = 4λ
2
1I
|ν1|
|µ1|
·
∣∣µ1|ν1|κ̄ j + |µ1|ν̄1κ j

∣∣2
(|ν1|Ξ1 + |µ1||ν1|2)2

( j = 1,2)

(49)

along the line ξ1 = 1
2 ln |ν1|

|µ1|
in the tz-plane. Fig-

ures 1a – c present three types of one-hump solitons
with the parameters satisfying ∆ j ≤ 0. One can ob-
serve that the top of |q j|2 tends to be flatter with the
increase of Ξ1

|µ1ν1|
. If ∆ j > 0, the non-degenerate soliton

exhibiting the double-hump profile is characterized by
the following three features: (i) The two humps in |q j|2
are symmetric and have the same height, that is,

|q j|2max =
16λ 2

1I |κ j|4
∣∣√∆ j + |κ j|2Ξ1−µ1ν1κ̄2

j

∣∣2 [√∆ j−2 Re(µ̄1ν̄1κ2
j )+ |κ j|2Ξ1

]
[
∆ j +4

√
∆ j|κ j|2Ξ1 +3|κ j|4(Ξ 2

1 + |µ1|2|ν1|2)+2 Re(Ω j)
]2 ( j = 1,2) , (50)

with Ω j = µ2
1 ν2

1 κ̄4
j − 4 µ1ν1Ξ1|κ j|2κ̄2

j − 2 µ1ν1√
∆ jκ̄

2
j , which is reached along two lines in the

tz-plane:

ξ1 =
1
2

ln
|κ j|2Ξ1−µ1ν1κ̄2

j − µ̄1ν̄1κ2
j ±
√

∆ j

|µ1|2|κ j|2

( j = 1,2) .
(51)

(ii) The soliton does not change its shape and remains
the separation between the two humps during propa-
gation. (iii) The formulae for the distance between the

two humps in |q j|2 is explicitly given by

d j =
1

4λ1I
ln
|κ j|2 Ξ1−µ1ν1κ̄2

j − µ̄1ν̄1κ2
j +
√

∆ j

|κ j|2 Ξ1−µ1ν1κ̄2
j − µ̄1ν̄1κ2

j −
√

∆ j
(52)

( j = 1,2) ,

which tells us that one hump will be separated with the
other one further and even to the infinity as the value
of Ξ1
|µ1ν1|

increases, as displayed in Figures 2a – c.
For N ≥ 2, (36) can describe the dynamics of cou-

pled soliton collisions in (2). Here, we make the
asymptotic analysis of (36) with N = 3, finding the fol-
lowing collision properties: (i) In the collisions among
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Fig. 3 (colour online). Shape-preserving collisions among three degenerate solitons via (45) transverse respectively at z =−15
(for the left solitons) and z = 15 (for the right solitons), with N = 3, β1 = i, β2 = 2−2i, β3 = i, γ1 = 2, γ2 = 2i, γ3 = 3− i,
δ1 = 1− i, δ2 = 2, δ3 = 1, λ1 =−0.1+1.2i, λ2 =−0.15− i, and λ3 =−0.2−1.5i.
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Fig. 4 (colour online). Shape-preserving collisions among three non-degenerate solitons via (45) transverse respectively at
z =−15 (for the left solitons) and z = 15 (for the right solitons), with N = 3, β1 = 1+2i, β2 = 2, β3 = 2, γ1 = 2i, γ2 = 1+2i,
γ3 =−i, δ1 = 1, δ2 = 1, δ3 = 0, λ1 =−0.1+1.2i, λ2 =−0.15− i, and λ3 =−0.2−1.5i.
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Fig. 5 (colour online). Shape-changing collisions of one degenerate soliton with two non-degenerate solitons via (45) trans-
verse respectively at z =−20 (for the left solitons) and z = 20 (for the right solitons), where the degenerate soliton (S11,S21)
experiences no change upon collision, while the non-degenerate solitons (S12,S22) and (S13,S23) change their amplitudes
and profiles after collision. The parameters are chosen as N = 3, β1 = i, β2 = 1, β3 = 2, γ1 = 2, γ2 = 2+ i, γ3 =−i, δ1 = 1,
δ2 = 1, δ3 = 0.8, λ1 =−0.1+1.2i, λ2 =−0.15− i, and λ3 =−0.2−1.5i.

degenerate (or non-degenerate) solitons, both |q1|2 and
|q2|2 meet the conventional elastic case, that is, each
component of interacting solitons maintain individ-
ual shape, velocity, and energy after collision. (ii) In
the case of degenerate solitons interacting with non-
degenerate ones, the degenerate ones in both two com-
ponents experience always the elastic collisions, while

the non-degenerate ones may undergo the change of
shapes including the soliton profiles and amplitudes,
together with the energy redistribution between two
components. The above two properties coincide with
those obtained in [24, 25]. Some examples of soliton
collisions via (36) with N = 3 are illustrated in Fig-
ures 3 – 5, where S−jn and S+

jn (n = 1,2,3) represent the
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nth soliton in the jth component before and after colli-
sion, respectively.

4. Concluding Remarks

In this paper, we have studied an integrable coher-
ently-coupled NLS system (2) which can describe the
optical pulse evolution in low birefringent fibers and
optical beam propagation in weakly anisotropic Kerr-
type nonlinear media. Compared with the studies on (2)
in [22 – 27], the new results obtained in this work can
be seen as follows: (i) We have completed the rigorous
proof for the gauge equivalence of Lax pair (3) under the
Nth iterated DT. (ii) We have obtained that each com-
ponent of the N-soliton solutions can be uniformly ex-
pressed as the rational fraction of two four-component
Wronskians. (iii) We have found the parametric crite-
rion for the non-degenerate solitons to respectively dis-
play the one- and double-hump profiles. In addition, we
have analyzed the soliton collisions via (36) with N = 3,
which confirms the results in [24, 25]. Finally, we would
like to address the following two issues:
1. It is conjectured in [12] that the N-soliton solu-

tions to the (r× s)-matrix NLS system can be rep-
resented in terms of the (r + s)-component Wron-
skians. This conjecture has been confirmed in this
work by noting that (2) can be equivalently written
in the (2×2)-matrix NLS system:

iQz +Qtt +2QQ†Q = 0, Q =
(

q1 q2
−q2 q1

)
, (53)

where the dagger denotes the Hermitian conjugate.
In a similar way, one can derive the 2m-component
Wronskian representation of the N-soliton solu-
tions to the general m-coherently-coupled NLS sys-
tem [23, 25]:

iq j,z +q j,tt +2
(
|q j|2 +2

m

∑
k=1,k 6= j

|qk|2
)

q j

−2
m

∑
k=1,k 6= j

q2
k q̄ j = 0 (1≤ j ≤ m) .

(54)

2. The double-hump solitons could allow the multi-
level coding of information in each pulse so as to
improve the bit rate in the high-speed optical fiber
communication systems [28]. In fact, it has been ex-
perimentally shown that the double-hump solitons
are immune to the time position shifts arising from

intrachannel interactions in the dispersion-managed
system [32, 33]. Based on this property, the non-
degenerate solitons can be used to design the er-
ror preventable line-coding scheme in which the bi-
nary data are assigned to the one- and double-hump
solitons [33]. The shape-changing collisions of de-
generate soliton(s) with non-degenerate soliton(s)
may find applications in virtual logic and compu-
tation [16, 17], and all-optical switching and ampli-
fication [30].
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Appendix: Lemmas for Proving Conditions (27a)
and (27b)

Lemma 1. Let the Darboux matrix TN(λ ) be in the
form of (5) with the functions a(n)

i j , b(n)
i j , c(n)

i j , and d(n)
i j

(1 ≤ i, j ≤ 2; 1 ≤ n ≤ N) determined by (17a) – (17d).
Then, the determinant of TN(λ ) can be expanded as

det TN(λ ) =
N

∏
k=1

(λ −λk)2(λ − λ̄k)2 . (A.1)

Proof. It is obvious that detTN(λ ) is a monic polyno-
mial in λ of degree 4N. By use of (10a) and (10b), one
can obtain that λk (1 ≤ k ≤ K) are the twice-repeated
roots of det TN(λ ). Equations (10c) and (10d) imply
that λ̄k (1≤ k≤ K) are also the twice-repeated roots of
det TN(λ ).

Lemma 2. Define that [uhl(λ )]4×4 = [TN,t(λ )+TN(λ )
U(λ )]T ∗N (λ ) and [vhl(λ )]4×4 = [TN,z(λ )+TN(λ )V (λ )]
T ∗N (λ ), where T ∗N (λ ) is the adjoint matrix of TN(λ ).
Then, λk and λ̄k (1 ≤ k ≤ N) are both the twice-
repeated roots of uhl(λ ) and vhl(λ ) (1≤ h, l ≤ 4).

Proof. The proof requires a large amount of tedious
calculations, but can be achieved with the assistance of
Mathematica. The process can be described as follows.
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First, we replace the first column of TN(λk) (or TN(λ̄k))
by virtue of (10a) (or (10c)) and calculate the adjoint
matrix T ∗N (λk) (or T ∗N (λ̄k)). Next, we remove the t-
and z-derivatives, respectively, for the first columns in
TN,t(λk) and TN,z(λk) (or TN,t(λ̄k) and TN,z(λ̄k)) by tak-
ing the t- and z-derivatives of (10a) (or (10c)) and us-
ing the fact that Ψk,t = U(λk)Ψk and Ψk,z = V (λk)Ψk

(or Φk,t = U(λ̄k)Φk and Φk,z = V (λ̄k)Φk). Then, we
check uhl(λk) = 0 and vhl(λk) = 0 (or uhl(λ̄k) = 0 and
vhl(λ̄k) = 0) for 1 ≤ h, l ≤ 4. Finally, we follow the
above procedure to reach the same results by utiliz-
ing (10b) (or (10d)), which suggests that λk and λ̄k
(1≤ k ≤ N) are the twice-repeated roots of uhl(λ ) and
vhl(λ ) (1≤ h, l ≤ 4).

Lemma 3. Let the Darboux matrix TN(λ ) in (5) be de-
termined by (17a) – (17d). Then, b(N)

11 , b(N)
12 , b(N)

21 , b(N)
22 ,

c(N)
11 , c(N)

12 , c(N)
21 , and c(N)

22 obey the following relations:

b(N)
11 = b(N)

22 , b(N)
12 =−b(N)

21 , (A.2a)

c(N)
11 = c(N)

22 , c(N)
12 =−c(N)

21 , (A.2b)

b̄(N)
11 = (−1)N−1c(N)

11 ,

b̄(N)
12 = (−1)Nc(N)

12 ,
(A.2c)

b̄(N)
21 = (−1)Nc(N)

21 ,

b̄(N)
22 = (−1)N−1c(N)

22 .
(A.2d)

Proof. We only need to prove that (A.2a) – (A.2c) are
satisfied since (A.2d) is a natural result of (A.2a) –
(A.2c). With the change of the order of equations, (17a)
and (17c) can be respectively written as

Aτ(−a12,a11,−b12,b11)T

= (f,−e, h̄, ḡ)T ,
(A.3a)

Aτ(−c12,c11,−d12,d11)T

(A.3b)
= (−1)N(h,−g,−f̄,−ē)T .

Solving (A.3a) and (A.3b) via Cramer’s rule, we can
obtain that

b(N)
11 =

−χ22

τ
, b(N)

12 =
(−1)N χ21

τ
, (A.4)

c(N)
11 =

(−1)N χ ′22

τ
, c(N)

12 =
−χ ′21

τ
, (A.5)

which imply the relations (A.2a) and (A.2b). On the
other hand, we take complex conjugate of (17a) and
change the order of equations, yielding

Aτ(−b̄11, b̄12, ā11,−ā12)T

= (g,h, ē,−f̄)T ,
(A.6)

from which, the relation (A.2c) can be derived by
means of Cramer’s rule.
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