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A modified mapping method is presented to derive a variable separation solution with two arbitrary
functions of the (2+1)-dimensional generalized Nizhnik–Novikov–Veselov equation. By selecting
appropriate functions in the variable separation solution, we discuss interaction behaviours among
special solitons, constructed by multi-valued functions, including the compacton-like dromion,
compacton-like peakon, and compacton-like semi-foldon.
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1. Introduction

In linear wave theory, the Fourier analysis and the
variable separation approach (VSA) are two most uni-
versal and powerful means for the study of linear par-
tial differential equations (PDEs). As a nonlinear ana-
logue of the Fourier analysis, the celebrated inverse
scattering transformation plays an important role to an-
alyze nonlinear wave dynamics [1]. The extension of
the VSA to nonlinear field has also been a highlight,
and there come out some methods: the formal VSA [2],
the multilinear VSA [3, 4], and the VSA based on the
mapping method [5, 6], and so on. Moreover, many di-
rect methods based on different mapping equations, in-
cluding the improved projective approach [7 – 9], the
q-deformed hyperbolic functions method [10], and the
projective Ricatti equation method (PREM) [11, 12],
were chosen to realize the variable separation to non-
linear equations.

Many single-valued localized structures (dromions,
peakons, and compactons etc.) have been extensively
investigated [3 – 12]. However, in the real natural phe-
nomena, there exist very complicated folded phenom-
ena such as the folded protein [13], folded brain and
skin surfaces, and many other kinds of folded biologic
systems [14]. Moreover, semifolded structures can also

be realized. For example, ocean waves may fold in one
direction, say x, and localize in an usual single val-
ued way in another direction, say y. These special lo-
calized structures can be constructed by multi-valued
functions. Of course, at the present stage, it is impossi-
ble to make satisfactory analytic descriptions for such
complicated folded natural phenomena. However, it is
still worth starting with some simpler cases. For ex-
ample, the interactions among some semi-structures,
such as compacton-like semi-dromion, compacton-like
semi-peakon, and compacton-like semi-foldon, were
little reported in previous literature.

Naturally, some significant and interesting issues
arise: Can other mapping equations be used to ob-
tain variable separation solutions of some (2+1)-
dimensional nonlinear physics systems? Can we dis-
cuss some new dynamical behaviours among semi-
structures based on these variable separation solutions?
In order to answer these issues, we study the follow-
ing well-known (2+1)-dimensional generalized Nizh-
nik–Novikov–Veselov (GNNV) equation:

ut +auxxx +buyyy + cux +duy

−3a(uv)x−3b(uw)y = 0 ,

ux = vy, uy = wx ,

(1)
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where a, b, c, and d are arbitrary constants. For
c = d = 0, the GNNV system will be degenerated to
the usual two-dimensional Nizhnik–Novikov–Veselov
(NNV) system, which is an isotropic Lax extension of
the classical (1+1)-dimensional shallow water-wave
Korteweg–de Vries (KdV) model. When a = 1, b =
c = d = 0 in (1), we get the asymmetric NNV equa-
tion, which may be considered as a model for an in-
compressible fluid. Some types of the soliton solu-
tions of the GNNV equation have been studied by
many authors. For instance, Boiti et al. [15] solved
the GNNV equation via the inverse scattering transfor-
mation. Zhang obtained many exact solutions of this
system based on an extended homogeneous balance
approach [16]. However, the GNNV equation yields
many interesting soliton structures that have not yet
been found, and the interaction between the solitons is
still not clear. In [17] and [18], authors obtained vari-
able separation solutions of (1).

2. The Modified Mapping Method

Consider a given nonlinear PDE with independent
variables x = (x0 = t,x1,x2,x3, . . . ,xm) and dependent
variable u,

L(u,ut ,uxi ,uxix j , . . .) = 0 , (2)

where L is in general a polynomial function of its ar-
gument, and the subscripts denote the partial deriva-
tives.

The basic idea of the mapping method is to seek
for an ansatz with positive and negative symmetric
form

u =
n

∑
i=0

ai(x)φ i [q(x)] , (3)

where ai are arbitrary functions of x to be de-
termined, and n is fixed by balancing the linear
term of the highest order with the nonlinear term
in (2).

Note that many mapping equations for φ have been
used, such as the Riccati equation φ ′ = l0 + φ 2 (l0
is a constant and the prime denotes differentiation
with respect to q) [4 – 6], φ ′ = σφ + φ 2 (σ is a con-
stant) [7 – 9], and φ ′ = l1 + l2φ 2 (l1 and l2 are two con-
stants) [19]. Here we seek for a solution of the given
nonlinear evolution equation (NLEE) (2) with the new

mapping equation [20]

φ
′ = (Aφ −C)(Bφ −D) , (4)

which is known to possess the general solution

φ =
Dexp[(BC−AD)q]−C exp[C1(AD−BC)]
Bexp[(BC−AD)q]−Aexp[C1(AD−BC)]

. (5)

Here C1 is an integration constant, further, A,B,C, and
D are arbitrary constants.

To determined u explicitly, we take following three
steps:

Step 1: Determine n by balancing the highest nonlin-
ear terms and the highest-order partial differ-
ential terms in the given nonlinear PDE (2).

Step 2: Substituting (3) along with (4) into (2) yields
a set of polynomials for φ i. Eliminating all the
coefficients of the powers of φ i, yields a series
of partial differential equations, from which
the parameters a0, ai (i = 1, . . . ,n), and q are
explicitly determined.

Step 3: Substituting a0, ai, q, and (5) into (3), one can
obtain possible solutions of (2).

3. Variable Separation Solutions for the
(2+++ 1)-Dimensional GNNV Equation

Along with the modified mapping method in Sec-
tion 2, by balancing the higher-order derivative terms
with the nonlinear terms in (1), we suppose that it has
the following formal solutions:

u(x,y, t) = a0(x,y, t)+a1(x,y, t)φ(q)

+a2(x,y, t)φ(q)2 ,

v(x,y, t) = b0(x,y, t)+b1(x,y, t)φ(q)

+b2(x,y, t)φ(q)2 ,

w(x,y, t) = c0(x,y, t)+ c1(x,y, t)φ(q)

+ c2(x,y, t)φ(q)2 ,

(6)

where φ satisfies (5) and q ≡ q(x,y, t). Inserting (6)
into (1), selecting the variable separation ansatz

q = χ(x, t)+ψ(y, t) , (7)

and eliminating all the coefficients of the powers of
φ i, one gets a set of partial differential equations, from
which we obtain a solution, namely
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a0 = 2ABCDχxψy , a1 =−2AB(AD+BC)χxψy , a2 = 2A2B2
χxψy ,

b0 =
aχxxx + cχx + χt +a

[
(AD+BC)2+2ABCD

]
χ3

x −3a(AD+BC)χxχxx

3aχx
,

b1 =−2AB
[
(AD+BC)χ

2
x −χxx

]
, b2 = 2A2B2

χ
2
x ,

c0 =
bψyyy +dψy +ψt +a

[
(AD+BC)2+2ABCD

]
ψ3

y −3a(AD+BC)ψyψyy

3bψy
,

c1 =−2AB
[
(AD+BC)ψ2

y −ψyy
]
, c2 = 2A2B2

ψ
2
y ,

(8)

where χ and ψ are arbitrary functions of x, t and y, t,
respectively.

Therefore, the variable separation solution of the
(2+1)-dimensional GNNV equation reads

u = 2ABCDχxψy−2AB(AD+BC)χxψy ·
Dexp[(BC−AD)(χ +ψ)]−C exp[C1(AD−BC)]
Bexp[(BC−AD)(χ +ψ)]−Aexp[C1(AD−BC)]

+2A2B2
χxψy ·

{
Dexp[(BC−AD)(χ +ψ)]−C exp[C1(AD−BC)]
Bexp[(BC−AD)(χ +ψ)]−Aexp[C1(AD−BC)]

}2

,

(9)

v =
aχxxx + cχx + χt +a[(AD+BC)2 +2ABCD]χ3

x −3a(AD+BC)χxχxx

3aχx

−2AB[(AD+BC)χ
2
x −χxx] ·

Dexp[(BC−AD)(χ +ψ)]−C exp[C1(AD−BC)]
Bexp[(BC−AD)(χ +ψ)]−Aexp[C1(AD−BC)]

+2A2B2
χ

2
x ·
{

Dexp[(BC−AD)(χ +ψ)]−C exp[C1(AD−BC)]
Bexp[(BC−AD)(χ +ψ)]−Aexp[C1(AD−BC)]

}2

,

(10)

w =
bψyyy +dψy +ψt +a[(AD+BC)2 +2ABCD]ψ3

y −3a(AD+BC)ψyψyy

3bψy

−2AB[(AD+BC)ψ2
y −ψyy] ·

Dexp[(BC−AD)(χ +ψ)]−C exp[C1(AD−BC)]
Bexp[(BC−AD)(χ +ψ)]−Aexp[C1(AD−BC)]

+2A2B2
ψ

2
y ·
{

Dexp[(BC−AD)(χ +ψ)]−C exp[C1(AD−BC)]
Bexp[(BC−AD)(χ +ψ)]−Aexp[C1(AD−BC)]

}2

,

(11)

where χ(x, t) and ψ(y, t) are two arbitrary variable sep-
aration functions.

4. Localized Structures in the GNNV Equation

Based on the solutions (9) – (11), we can obtain
many rich coherent localized structures such as non-
propagating solitons, dromions, peakons, compactons,
foldons, instantons, and ring solitons [3 – 12]. Here
we will pay attention to interaction behaviours be-
tween special solitons for the physical quantity u ex-
pressed by (9). The interaction behaviours between
solitons in (2+1)-dimensional nonlinear models are
usually considered to be completely elastic, which

means that the amplitude, velocity, and shape of a soli-
ton do not undergo any change after the nonlinear
interaction. Otherwise, the interaction between soli-
tons is non-elastic (non-completely elastic and com-
pletely non-elastic). Like the collisions between two
classical particles, a collision in which the solitons
stick together is sometimes called completely non-
elastic.

4.1. Localized Structures Constructed by Multi-Valued
Functions

We discuss the three special combined soliton struc-
tures, i. e. compacton-like dromion, compacton-like
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peakon, and compacton-like semi-foldon, by introduc-
ing multi-valued function as

ψy =
N

∑
i=1

κi(ζ −dit) , y = ζ +
N

∑
i=1

ηi(ζ −dit) , (12)

where di (i = 1,2, . . . ,N) are arbitrary constants, κi

and ηi are localized excitations with the properties
κi(±∞) = 0, ηi(±∞) = const. From (12), one can
know that ζ may be a multi-valued function in some
suitable regions of y by choosing the functions ηi

appropriately. Therefore, the function px, which is
obviously an interaction solution of N localized ex-
citations due to the property ζ |x→∞ → ∞, may be
a multi-valued function of x in these areas, though
it is a single-valued function of ζ . Actually, most
of the known multi-loop solutions are special cases
of (12).

Specifically, χ and ψ are chosen as

χ =


0 x≤−π

4
,

4sin(2x)+1 − π

4
< x≤ π

4
,

5 x >
π

4
,

(13)

ψy = 0.5sech2(ζ −0.5t) ,
y = ζ −E tanh(ζ −0.5t) ,

(14)

where E is a characteristic parameter, which de-
termines the localized structure. Figure 1 describes
these special localized structures, i. e. compacton-like
dromion, compacton-like peakon, and compacton-like
semi-foldon, with E = 0.1, 0.95, and 1.5, respectively.
They are localized as compacton in the y-direction and
bell-like soliton, peakon, and loop soliton in the x-
direction, respectively.
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Fig. 1. Sectional views of
special solitons at (a) x = 0
and (b) y = 0 for parameters
A = 2, B = 1, C = 0.5, D =
3, C1 = 0.1 at time t = 15.

4.2. Completely Elastic Interaction Among Solitons

Let us study interaction behaviours among these
special solitons produced by multi-valued functions
above. If we take the specific choice N = 3, d1 = 0,
d2 = 0.5, and d3 =−0.5 in (12), one has

ψy = 0.6sech2(ζ )+0.5sech2(ζ −0.5t)

+0.7sech2(ζ +0.5t) ,
y = ζ −E tanh(ζ )−F tanh(ζ −0.5t)
−G tanh(ζ +0.5t) ,

(15)

where C, D, and E are characteristic parameters,
which determine the types of interaction. Moreover,
χ is given by (13). From the expression u with (15)
and (13), one can obtain three solitons, one is static,
another is moving along positive y-direction, and the
last one is moving along negative y-direction.

If we take the specific values E = G = 0.95, F =
1.5 in (15), then we can successfully construct the
interaction among two compacton-like peakons and
one compacton-like semifoldon, which possess a phase
shift for the physical quantity u depicted in Figure 2.
From Figure 2, one can find that the interaction may
exhibit a completely elastic behaviour since solitons’
shapes and amplitudes are completely maintained after
the interaction.

The phase shift can also be observed. Prior to in-
teraction, the velocities of the smallest compacton-
like semifoldon, middle and the largest compacton-
like peakons have set to be v02x = d2 = 0.5,, v01x =
d1 = 0, and v03x = d3 = −0.5, respectively. The mid-
dle compacton-like peakon site changes from y =−0.6
to y = 0.6, then resides at x = 0.6 and maintains its
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Fig. 2. Completely elastic
interaction among two
compacton-like peakons
and one compacton-like
semifoldon at time (a)
t = −15, (b) t = −0.1, and
(c) t = 15. (d) Sectional
view of (a) and (c) at
x = 0. The parameters are
chosen as A = 2, B = 1,
C = 0.5, D = 3, C1 = 0.1,
E = G = 0.95, F = 1.5.

initial velocity v1x = v01x = 0 (i. e. static) after inter-
action. Therefore, the magnitude of the phase shift
of the static middle compacton-like peakon is 1.2.
The final velocities v2x and v3x of the other mov-
ing compacton-like peakons also completely maintain
their initial values v2x = v02x = 0.5 and v3x = v03x =
−0.5. The phase shifts of them can also been observed
in Figure 2d. From Figure 2, the smallest compacton-
like semifoldon, middle and the largest compacton-
like peakons preserve their amplitudes 0.96 ·10−8,
1.2 ·10−8, and 1.32 ·10−8, respectively, before and af-
ter interaction. The amplitudes, velocities, and shapes
of the solitons do not undergo any change after the
nonlinear interaction, and thus this interaction is com-
pletely elastic.

Similarly, if we choose the specific values E =
F = G = 1.5 in (15), then we can successfully obtain
interaction among three compacton-like semifoldons.
This interaction has also a completely elastic behaviour
since solitons’ shapes and amplitudes are not com-
pletely maintained any more after the interaction (c.f.
Fig. 3). However, different from the interaction among
two compacton-like peakons and one compacton-like
semifoldon in Figure 2, here no phase shift is ob-
served in Figure 3d. Before and after interaction, the
static smallest semifoldon is both located at x = 0 and
the other two semifoldons exactly exchange the cor-
responding position. The middle, smallest, and largest

compacton-like semifoldons maintain their initial ve-
locities v2x = v02x = 0.5 (positive y-direction moving),
v1x = v01x = 0 (i. e. static), and v3x = v03x = −0.5
(negative y-direction moving), respectively. From Fig-
ure 3, the three compacton-like semifoldons preserve
their amplitudes 7.3 ·10−9, 6.4 ·10−9, and 5.2 ·10−9,
respectively, before and after interaction. This interac-
tion is completely elastic because the amplitudes, ve-
locities, and shapes of the solitons maintain unchanged
after the nonlinear interaction.

Moreover, we can analyze asymptotic behaviours of
the localized excitations to discuss the type of inter-
action. In general, if the function χ and ψ (consider-
ing (12)) are selected as multi-localized solitonic exci-
tations with (zi ≡ ζ −dit)

χ|t→∓∞ =
M

∑
j=1

χ
∓
j , χ

∓
j ≡ χ j(x− c jt +∆

∓
j ) , (16)

ψ|t→∓∞ =
N

∑
i=1

ψ
∓
i ,

ψ
∓
i (zi)≡ ψi(ζ −dit)≡

∫
κi dy|zi→∓∞ ,

(17)

where {χ j,ψi}∀ j and i are localized functions, then
the physical quantity expressed by (9) delivers M×N
(2 + 1)-dimensional localized excitations with the
asymptotic behaviour
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u|t→∓∞→
N

∑
i=1

M

∑
j=1

2χ
∓
jxψ
∓
izi

1+η
∓
izi

{
ABCD−AB(AD+BC)

·
Dexp

[
(BC−AD)(χ

∓
j + χ̃

∓
j +ψ

∓
i + ψ̃

∓
i )
]
−C exp[C1(AD−BC)]

Bexp
[
(BC−AD)(χ

∓
j + χ̃

∓
j +ψ

∓
i + ψ̃

∓
i )
]
−Aexp[C1(AD−BC)]

+A2B2
(Dexp

[
(BC−AD)(χ

∓
j + χ̃

∓
j +ψ

∓
i + ψ̃

∓
i )
]
−C exp [C1(AD−BC)]

Bexp
[
(BC−AD)(χ

∓
j + χ̃

∓
j +ψ

∓
i + ψ̃

∓
i )
]
−Aexp [C1(AD−BC)]

)2}
≡

N

∑
i=1

M

∑
j=1

u∓i j ,

(18)

Fig. 3. Completely elastic interaction among three compacton-like semi-foldons at time (a) t = −15, (b) t = −0.1, and (c)
t = 15. (d) Sectional view of (a) and (c) at x =−0.5. The parameters are chosen as A = 2, B = 1, C = 0.5, D = 3, C1 = 0.1,
E = F = G = 1.5.
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Fig. 4. Completely elastic interaction among compacton-like dromion, compacton-like peakon, and compacton-like semi-
foldon at time (a) t = −15, (b) t = −0.1, and (c) t = 15. (d) Sectional view of (a) and (c) at x = −0.5. The parameters are
chosen as A = 2, B = 1, C = 0.5, D = 3, C1 = 0.1, E = 0.1, F = 1.5, G = 0.95.

y|t→∓∞→ ζ +δ
∓
i +η

∓
i (zi) , (19)

with

χ̃
∓
i =∑

j<i
χ j(∓∞)+ ∑

j>i
χ j(±∞) , (20)

ψ̃
∓
i =∑

j<i
ψ j(∓∞)+ ∑

j>i
ψ j(±∞) , (21)

δ
∓
i =∑

j<i
η j(∓∞)+ ∑

j>i
η j(±∞) . (22)

In the above discussion, the shape of the i j-th lo-
calized excitation ui j will be changed (non-completely
elastic interaction) if χ̃

+
j 6= χ̃

−
j , and (or) ψ̃

+
i 6= ψ̃

−
i , fol-

lowing the interaction. On the contrary, it will preserve
its shape (completely elastic interaction) during the in-
teraction if χ̃

+
j = χ̃

−
j , and (or) ψ̃

+
i = ψ̃

−
i .

Now we take the interaction among three
compacton-like semifoldons as an example to il-
lustrate the asymptotic analysis. Here c j = 0 in (16),
and thus we only consider whether ψ̃

+
i is equal

to ψ̃
−
i . Analytically, from (15) and (21), we have

ψ̃
+
1 − ψ̃

−
1 = 0, ψ̃

+
2 − ψ̃

−
2 = 0, and ψ̃

+
3 − ψ̃

−
3 = 0.

That is to say, the completely elastic interaction
condition (21) is really satisfied. This result agrees

with the qualitative analysis above. Other cases can be
analyzed similarly. Here we omit them due to the limit
of length.

4.3. Non-Completely Elastic Interaction Among
Solitons

It is interesting to note that although the above selec-
tions are all completely elastic interaction behaviours,
we can also construct localized coherent structures
with non-completely elastic interaction behaviours by
appropriately selecting the values of E, F , and G
in (15).

If we select the specific values E = 0.1, F =
1.5, and G = 0.95 in (15), then we can success-
fully construct the interaction among compacton-like
dromion, compacton-like peakon, and compacton-like
semi-foldon for the physical quantity u depicted in Fig-
ure 4. From Figure 4, one can find that the interac-
tion among them may exhibit a non-completely elas-
tic behaviour since solitons’ shapes and amplitudes are
not completely maintained although the final veloci-
ties of the solitons preserve the original velocities af-
ter interaction. The phase shift is also observed. Before
and after interaction, the static smallest compacton-like
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dromionsite changes from y = −0.8 to y = 0.8, and
the other two solitons also do not exchange the corre-
sponding position and shift some distances.

Similarly, we can discuss the interaction among
two compacton-like dromion and one compacton-like
semi-foldon by setting the specific values E = F = 0.1,
and G = 1.5 in (15). This case is also a non-completely
elastic interaction. For the limit of length, we omit the
detailed discussion about it.

5. Summary

In this paper, our interest has been focused on two
issues proposed in the introduction. Here we review the
main points offered in this paper:

• A new mapping equation is used.
Besides mapping equations in [5 – 12], a new map-
ping equation is utilized to obtain variable separa-
tion solutions of some (2+1)-dimensional nonlin-
ear physics systems. As an example, we apply it to
the (2+1)-dimensional GNNV equation, and derive
variable separation solution with two arbitrary func-
tions.

• Non-completely elastic and completely elastic
interactions among solitons are investigated.
By selecting appropriate functions in the vari-
able separation solution, we discuss interac-
tion behaviours among special solitons, con-

structed by multi-valued functions, including the
compacton-like dromion, compacton-like peakon,
and compacton-like semi-foldon. The analysis
results exhibit that the interaction behaviours among
two compacton-like peakons and one compacton-
like semifoldon, and among three compacton-like
semifoldons are both completely elastic, while
the interaction behaviours among compacton-like
dromion, compacton-like peakon, and compacton-
like semi-foldon, and among two compacton-like
dromion and one compacton-like semi-foldon are
both non-completely elastic.

Of course, there are some pending issues to be fur-
ther studied. How to quantify the notion of complete
or non-complete elasticity more suitably? What is the
general equation for the distribution of the energy and
momentum for these interactions?
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