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The thermal magnetoresistance, optical magnetoreflectance, and extremal properties of the energy
loss spectrum connected with the cyclotron resonance effect are approached on a theoretical basis.
The formalism, which applies the idea of two kinds of relaxation times active for the electron magne-
totransport in a metal, gives – at least qualitatively – a satisfactory agreement with the observed data
in all examined cases.
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1. Introduction

The effect of the magnetic field on the electron
transport in metals has been examined both experimen-
tally and theoretically in many aspects and on many
occasions. Perhaps the most widely investigated ef-
fect was the change of the electric resistance due to
the change of the magnetic field. Experimentally the
problem was approached a time ago [1] and found nu-
merous continuations [2]. Theoretically its explanation
was believed to be represented in [3].

In fact, numerous discrepancies between the expec-
tations of theory and the data of experiment led some
authors to conclusion that none of the magnetic field
dependencies of the diagonal elements of the electri-
cal or thermal magnetoresistivity tensors predicted by
a semiclassical theory of the electron magnetotransport
in metals are borne out by experiment [4].

In [5, 6], we tried to demonstrate that this situation,
at least concerning the magnetoresistance of metals,
can be improved if two sepaprate relaxation times of
the electron transport are considered. In this case, the
tensor of the magnetoresistance is a sum of two ten-
sors, one of them having the relaxation time τel, the
other one having the relaxation time τmagn:

ρel =
m

ns e2τel

1 0 0
0 1 0
0 0 1

 , (1)

ρmagn =
m

ns e2τmagn

1 −ξ 0
ξ 1 0
0 0 1

 ; (2)

τel is responsible for the action of the elecric field on
the metal, whereas τmagn is taking into account the ef-
fect of the magnetic field; ns is the concentration of
the electron carriers. Therefore the effective tensor for
magnetoresistance becomes a sum of (1) and (2):

ρeff = ρel +ρmagn =
m

ns e2τeff


1 −ξ

τeff

τmagn
0

ξ
τeff

τmagn
1 0

0 0 1


=

m
ns e2τeff

 1 −ξ ′ 0
ξ ′ 1 0
0 0 1

 . (3)

In calculating (3), we applied the formula

1
τeff

=
1

τel
+

1
τmagn

(4)

which is a consequence of the Matthiessen’s rule com-
bining τel and τmagn. In the last step of (3), the substi-
tution

ξ
′ = ξ

τeff

τmagn
(5)
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has been done. This holds because the parameter enter-
ing (2) and (3) is

ξ =
eB
mc

τmagn = Ω0τmagn . (6)

A characteristic property of ξ in (6) is that it is a con-
stant number independent of the induction B, so in ef-
fect τmagn becomes inversely proportional to B [5, 6].

In the developed formalism, we assumed that the
electrons of a metal are considered as collected in a sin-
gle band of states and these states are of a nearly-free
electron character. Moreover, the magnetic field acting
on the electron ensemble has a constant direction, say
along axis z [7].

The change ∆ρ of the electric resistance due to the
magnetic field referred to a diagonal term of (1) calcu-
lated at B = 0 becomes

∆ρ

ρ(0)
=

τel

τmagn
. (7)

Since

1
τmagn

=
Ω0

ξ
, (8)

we have

Ω0 ∼ B , (9)

and ξ is a constant parameter calculated in [5]. Evi-
dently, we obtain a systematic increase of the expres-
sion in (7) with an increase of B.

A comparison between the experiment and theory
on the basis of (7) has been done for numerous exper-
imental situations [5, 6, 8, 9]. Because τel in (7) is ex-
perimentally a well-accessible parameter strongly de-
pendent on the metal temperature, but the temperature
dependence does not apply to τmagn, the dependence
of magnetoresistance in (7) on the temperature change
is easy to obtain from the corresponding experimental
temperature dependence of τel; see [9].

The aim of the present paper is to extend a compar-
ison between the experiment and theory on the ther-
mal magnetotransport of electrons and the magneto-
reflectivity effect in metals. In spite of an old experi-
mental basis of these phenomena, an adequate theoret-
ical approach seemed here to be lacking. Another kind
of the examined effects concerns the energy loss spec-
tra obtained in course of the cyclotron resonance phe-
nomenon due to the magnetic field. The applied for-
malism allowed us to approach the cyclotron resonance

frequency on a purely theoretical footing, i.e. without
any use of the empirical parameters. A comparison of
the calculated data with experiment can give an esti-
mate of the effective mass of the metal electrons.

2. Thermal Magnetoresistance Effect Calculated
and Compared with Experiment

The change of the electronic thermal resistance of
a metal due to the magnetic field is strictly connected
with the electric magnetoresistance of that metal. Sim-
ilarly to the magnetoresistance of the electron trans-
port with no thermal effects considered, an experimen-
tal background for the change of the electronic thermal
resistance upon the action of the magnetic field became
quite old [10, 11]. But, at the same time, a satisfac-
tory computational basis of the phenomenon seemed to
be lacking. In fact, having an approach to the electric
magnetoresistance, an insight into the thermal electron
resistance can be attained theoretically in a simple way.

A well-known relation between the thermal electron
conductivity λ (0) and the electric conductivity σ(0)
existing in the absence of the magnetic field (B = 0;
see e.g. [12]) gives

λ (0) = LeT σ(0) . (10)

Here Le is the Lorenz number for the electronic con-
ductivity which may differ from the normal (free-
electron) value Ln [12], T is the absolute temperature.
We have omitted a small component λl of λ (0) which
remains unaffected by the magnetic field [12].

Relation (10) represents the essence of the
Wiedemann–Franz law; it can be transformed, for the
sake of convenience, into the formula between the ther-
mal resistivity

k =
1
λ

(11)

and the electric resistance

ρ =
1
σ

. (12)

In the absence of a magnetic field B, we have [12]

1
k(0)

= LeT
1

ρ(0)
(13)

or

ρ(0) = LeT k(0) . (13a)
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The results obtained experimentally by Grueneisen
and Erfling [13] (see also [12]) show that the changes
∆ρ and ∆k due to the changes of the magnetic field
satisfy an equation much similar to (13a):

∆ρ ∼= LnT ∆k . (14)

By dividing (14) by (13a), we obtain

∆ρ

ρ(0)
∼=

Ln

Le

∆k
k(0)

; (15)

here the ratio Ln/Le is an approximately constant term
usually not much different than unity; see [12, 14].

Therefore, the change of the thermal resistivity in
the magnetic field referred to the resistivity in the ab-
sence of that field is approximately equal to a similar
change of the electric resistance leading to the magne-
toresistance effect. The relation (15) is applied below
in calculating the dependence of the ratio ∆k/k(0) on
B and T .

The property of proportionality of the thermal mag-
netoresistance effect to the electric magnetoresistance
(see (15)) implies immediately a linear dependence

∆k
k(0)

∼ B (16)

obtained before [5, 6, 8] for the magnetoresistance
alone.

This behaviour is in fact observed in numerous
metal cases examined experimentally (Zn, Pb, Cd, Tl,
In, Ag, Sn, Ga in [10], Zn in [15], Be in [12, 16].
For beryllium, instead of the resistance changes the ef-
fect of the magnetic field on the correspoding kinds
of the metal conductivity were examined). Similar ob-
servations could be done also for the metal samples
in which the size effects enter into play, for exam-
ple a thin rod of sodium [11, 17]. Nevertheless, for
the metallic potassium [4] and tungsten [12, 17] rather
a parabolic increase of the thermal magnetoresistance
with the magnetic field than a linear behaviour is ob-
served. This discrepancy cannot be explained in the
framework of the present theory. However, for potas-
sium metal a strictly linear dependence of the longi-
tudinal thermal magnetoresistance on B is experimen-
tally obtained [4].

It should be noted that the reported results con-
cerned the magnetic field larger than the critical field,
so the metals being submitted to low temperatures re-
mained in their normal state. The dependence of Le on

B in (15) has been also examined on the experimental
basis (see e.g. [12, 18]) and this shows rather limited
changes of that parameter with B. A very convincing
experimental illustration of the property of proportion-
ality existent between the electric and thermal mag-
netoresistance is provided by the measurements done
on the both resistance kinds for the case of zinc [15].
These data plotted for different angles of the magnetic
field taken for a constant B, exhibit an evident parallel
behaviour.

A separate problem is an estimate of the slope
of increase of the thermal magnetoresistance with an
increase of B. This slope should be a temperature-
dependent quantity because the resistance ρel(B = 0)
and the relaxation time τel entering the formula for the
magnetoresistance are quantities having such temper-
ature dependence; see e.g. [2]. In view of the pres-
ence of τel in the numerator of the formula (7), and
the property of proportionality obtained in (15), both
the electric and thermal magnetoresistance should in-
crease with a lowering of the temperature T . Such
a behaviour was in fact observed in numerous metals.
For example the slopes of dependencies of the thermal
magnetoresistance on B plotted for numerous samples
of zinc, lead, cadmium, thallium, silver, tin, and gal-
lium are systematically larger for the lower T than for
higher T . An exception is represented by indium and
a small number of samples of zinc, cadmium, thallium,
tin, and gallium for which the slopes of the plots of
the thermal magnetoresistance versus B done for differ-
ent temperatures merge practically together. In general,
the changes of temperatures taken into account for this
kind of measurements are relatively quite small [10].
A very good experimental illustration of the rule of the
higher thermal magnetoresistance for the lower T is
given in the case of tungsten [11, 12]. This effect is
obtained for the transversal kind of the thermal mag-
netoresistance, but a similar illustration for the temper-
ature dependence of the longitudinal kind is provided
in [4].

3. Slopes of a Linear Increase of the Thermal
Magnetoresistance with B

These slopes depend essentially on the relaxation
time τel entering tensor (1); see also (7) and (15). τel
is a strongly temperature-dependent parameter the be-
haviour of which can be obtained on the empirical ba-
sis; see e.g. [2]. For numerous metals and temperatures
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T < 273 K it is convenient to apply the ratios

1
r

=
ρ(T = 273 K; B = 0)
ρ(TL < 273 K; B = 0)

=
τel(TL < 273 K; B = 0)
τel(T = 273 K; B = 0)

(17)

tabulated in [2]. In general, however, the measurements
of ∆k/k(0) were done for T which do not fit TL given
in [2]. In case of a small difference between the T and
TL of [2], the following supplementary correcting fac-
tors which couples τel at a given T with τel at T = TL

can be applied:

1
s

=
τel(T ; B = 0)
τel(TL; B = 0)

=
ρ(TL; B = 0)
ρ(T ; B = 0)

=
TLG(θ/TL)
T G(θ/T )

;
(18)

θ is the Debye temperature of a metal and G(θ/T )
is the Grueneisen function of the ratio θ/T , respec-
tively [19]. The effective τel for a given T which re-
places τel for 273 K becomes

τ
eff
el (T ) =

τel(T = 273 K)
rs

. (19)

The experimental τel for 273 K are taken from [19]
and [20]. The relaxation time τel = 0.58 ·10−14 s for
the tungsten metal at 273 K is estimated from the em-
pirical data for the electric resistance [21] and ns =
12.7 ·1022 cm−3 obtained from the crystallographic
data [22].

The slope calculations are facilitated by the rela-
tion which couples the cyclotron frequency Ω0 and
the magnetic field induction B expressed in kilogauss
units. This is

Ω0 = 1.76×1010B , (20)

where the number in (20) is expressed in radians per
second; see e.g. [11]. The formula (20) gives the fol-
lowing slope value for a linear dependence of ∆k/k(0)
on B:

∆k
Bk(0)

=
1.76×1010τel

ξ
, (21)

on condition B is expressed in kilogauss units, and τel is
referred to the appropriate temperature. A list of slopes
obtained in this way for different metals and different

Table 1. Slope values of a linear increase of the electronic
thermal resistance obtained with an increase of B. Theoret-
ical data of (21) compared with those from the experimen-
tal plots [10, 15, 18]. B is expressed in kilo-gauss units. The
slope may vary in dependence on that whether a transver-
sal or longitudinal effect of the magnetic field acting on the
electric current is taken into account.

Metal Temperature Theoretical slope Experimental slope
Zn 2.5 K 0.56 0.1 – 0.2

3.4 K 0.12 0.1
4.5 K 0.03 0.07
4.6 K 0.03 0.03 – 0.2

Cd 2.7 K 3.5 9.5
3.5 K 1.0 8.9

In 2.2 K 2.8 0.1
2.8 K 0.88 0.1
3.25 K 0.4 0.08

W 15 K 0.25 1.0
20 K 1.0 4.0

Pb 2.7 K 2.6 1.5
5.3 K 0.1 0.13
6.4 K 0.035 0.063

temperatures is presented in Table 1. The slopes, calcu-
lated with the aid of the quantum-mechanical constant

ξ =
1
2

(22)

(see [5]), are compared with the slopes data derived
from the experimental plots of the thermal magnetore-
sistance versus B. A systematic increase of the slopes
accompanied by a decrease of the sample temperature
is observed equally on the experimental and theoretical
side.

4. Magnetooptical Effect of the Radiation
Reflection in a Metal

This kind of effect seems to be not yet discussed
by the theory although experimentally the dependence
of reflection of radiation incident on metals due to the
changes of the magnetic field has been measured a time
ago, for example for the antimony metal [23, 24].

In a theoretical approach, an analysis of the relax-
ation time in a metal is here of importance. In case of
a normal incidence of radiation on a planar surface of
a metal, the solution of Maxwell’s equations provides
us with the following formula for a real reflection co-
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efficient (see e.g. [25]):

R =
(n−1)2 +k2

(n+1)2 +k2 . (23)

Here n and k are respectively the real and imaginary
parts of the complex refractive index N. For metals,
the dielectric constant ε entering N can be neglected,
therefore the real and imaginary parts of N are then
equal in magnitude, giving

N = n+ ik =
(

2πσ

ω

)1/2

(1+ i) . (24)

Here σ is the conductivity and ω the frequency of the
incident wave. In the quoted experiments [23, 24], the
radiation photon had the energy

h̄ω = 0.1086 eV (25)

which gives

ω = 1.65 ·1014 s−1 . (26)

In the next step, the carrier concentration in the an-
timony metal equal to ns = 16.5 ·1022 cm−3 [20] pro-
vides us with the plasmon frequency

ωp =
(

4πns e2

m

)1/2

≈ 23 ·1015 s−1 . (27)

The experiments were performed at temperature of
4 K, so the relaxation time of the electric conductiv-
ity is expected to be roughly 102 times longer than at
273 K (see e.g. [26]). Thus,

τel = τ
(4 K)
el

∼= 102×0.55×10−14 s≈ 10−13 s , (28)

where at 273 K entering (28) is taken from [20].
In effect, we have the relation

1

τ
(4 K)
el

< ω < ωp (29)

which satisfies the relaxation region in which the ab-
sorption coefficient falls rapidly [25] but the metal is
still strongly reflecting with the coefficient

R∼= 1− 1

(πστel)1/2
≈ 1− 2

ωpτel
. (30)

The relaxation time τel concerns the electron scatter-
ing on the metal defects, so it has no dependence on the

magnetic field. But the scattering on that field is made
represented by a separate relaxation time τmagn = τ(B)
which should be combined with τel; see (4). Moreover,
the conduction σ in (30) which depends on τel alone
should change its dependence to that on the effective
relaxation time τeff. The details of this point can be ex-
amined for the electrons in a metal collected in a single
band of states having a nearly free-electron character.
If the magnetic field is acting on the electron ensemble
in a constant direction, say parallel to the axis z, the
tensor of the electric conductivity becomes [7]

σ =
ns e2τel

m(1+ξ 2
0 )

 1 ξ0 0
−ξ0 1 0

0 0 1+ξ 2
0

 . (31)

Here τel is the relaxation time characteristic for the
electric conductivity in the absence of the magnetic
field (see (1)), and ξ0 is a parameter equal to a product
of τel and the cyclotron frequency Ω0 in (6); see [7].
Therefore

ξ0 = τelΩ0 . (32)

However, when the resistance tensor combined of two
tensors (1) and (2) (see (3)) is taken into account, the
conductivity tensor (31) is modified into

σ
eff =

ns e2τeff

m(1+ξ ′2)

 1 ξ ′ 0
−ξ ′ 1 0

0 0 1+ξ ′2

 , (33)

where ξ ′ is given by the formula (5). This is so because
the resistance tensor obtained in a final step of (3) is
the reciprocal tensor of (33); see a similar operation
between the resistance and conductivity tensors in case
(31) instead of (33) is applied [7]. Moreover, from (5)
and (6), we obtain

ξ
′ =

eB
mc

τmagn
τeff

τmagn
=

eB
mc

τeff . (34)

We show below that only an effective relaxation
time τeff can provide us with results for the magnetoef-
fects being in agreement with experiment. For a subsi-
tution of the diagonal z-element from (33), namely

σ
eff
zz =

ns e2τeff

m
, (35)
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into (30), and the respective change of τel into τeff,
gives instead of (30) the formula

R = R(B)∼= 1− 2
ωpτeff

= 1− 2
ωpτel

− 2
ωpτmagn

,
(36)

where τmagn depends on B because of (6) and (8). In
experiments [23, 24] the ratio

B(B)−R(0)
R(0)

=
− 2

ωpτmagn

1− 2
ωpτel

(37)

is measured. The result in (37) is attained because
of the value R(0) = R (B = 0) presented in the for-
mula (30).

With the data taken from (26) and (28), the reflection
coefficient

R(0)∼= 1− 2
23×1015×10−13

∼= 1− 1
103 (38)

is a number close to unity. On the other hand, the nu-
merator in (37) is a number proportional to B; see (8).
This is in fact a measured result in [23, 24] obtained
till very high B on condition the absolute value of
R(B)−R(0) is taken into account. However, a result
for the proportionality coefficient α multiplying B in
the formula

|R(B)−R(0)|
R(0)

= αB (39)

is rather poor: experimentally the slope α in (39) at-
tains the value of about 0.2 for B = 110 kG, but the
theoretical slope is much smaller, for it is only about
0.0004. To some extent, corrections due to the effec-
tive electron mass and the concentration ns may be ex-
pected to improve this situation.

A similar linear dependence of the reflectivity data
on B has been observed also for graphite [27, 28], both
with the aid of the conventional spectrometer and with
laser. Here, however, a breakdown of reflectivity at
very large B, absent in the antimony metal, is taking
place.

Beyond of the main dependence on B, also small
oscillations in the magnetoreflection are obtained [23,
24]. They can be identified with the optical de Haas–
Schubnikow effect which occurs when the Landau lev-
els are crossed by the Fermi surface because of the

change of the magnetic field. A characteristic point is
here that the periods of the oscillations obtained sep-
arately from the magnetoreflection and magnetoresis-
tance are much similar. This can be expected from the
fact that both these effects are dependent on the induc-
tion B in the same way: the magnetoreflection in (37)
and (39) is proportional to τ−1

magn, but the same depen-
dence on τmagn holds also for the magnetoresistance;
see formula (39) in [5].

It should be noted that in order to obtain a posi-
tive change (increase) of reflectance R with increase
of B, a negative sign has been applied before B in the
definition of Ω0 given in (6). Such a definition is in
fact introduced for Ω0 in some textbooks; see e.g. [7].
But a quantum-mechanical derivation of the parameter
value ξ given in [5] is insensitive to the choice of the
sign for B.

5. Extrema in the Energy Loss Spectrum
Connected with the Cyclotron Resonance

The conductivity tensor (31), and its modification
(33), can be the basis of calculations also in case when
the electric field is modulated by the frequency ω:

~E = ~E0 eiωt ; (40)

see [29]. The power P absorbed by the electrons from
the electromagnetic field referred to the total power of
the linear wave P0 is [29]

P
P0

=
1+(Ω 2

0 +ω2)τ2

[1+(Ω 2
0 −ω2)τ2]2 +4ω2τ2

=
1+ x+q

(1+ x−q)2 +4q
,

(41)

where x = Ω 2
0 τ2 and q = ω2τ2. P0 corresponds to the

situation when B = Ω0 = 0 and ω = 0, leading to the
ratio of (41) equal to unity [29].

The extremum of (41) is obtained from the condition

∂

∂x

(
P
P0

)
=

(1+x−q)2 +4q−2(1+x−q)(1+x+q)
[(1+x−q)2 +4q]2

= 0 (42)

which gives

x1,2 =−1−q±2
√

q+q2 . (43)

A physical background of x implies x > 0, so q� 1.
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Exper. Exper. Exper. Theor. Theor. Exper.

Metal ω B at Ω ext
0 Ω ext

0
meff

m
meff

m
(in Gcps) resonance (in rad/s) (in rad/s) from (46)

(in kG)
see (44a)

Al [31] 35.5 10 1.76×1011 3.15×1011 0.56 0.11 – 0.24
Zn [32] 72 13 2.6×1011 6.4×1011 0.4 1.3
Cd [33] 72 15 2.6×1011 6.4×1011 0.4 0.4 – 0.76
Sb [34] 23.5 1 0.18×1011 2.1×1011 0.09 0.05 – 1.03

Table 2. Observed cyclotron frequency
of the extremal absorption for a signal
having the frequency ω compared with
the frequency calculated from the for-
mula (44a). The effective electron mass
calculated from the ratio of both fre-
quencies is compared with the effective
mass obtained from experiments given
in the references quoted in the last col-
umn of the Table.

In effect, the solution in (43) correspoding to the ex-
tremal value of P/P0 becomes approximately

xext = (Ω ext
0 )2

τ
2 ∼= 2q = 2ω

2
τ

2 (44)

or

Ω
ext
0 ≈

√
2ω . (44a)

The result in (44a) can be compared with experi-
ment. In fact, the measured positions of the extrema in
the energy loss spectrum do not differ much from the
modulation frequency ω . Assuming that the effective
electron mass is entering the frequency Ω ext

0 , this fre-
quency is calculated according to the equation

Ω
ext(theor)
0 =

eB
meffc

=
√

2ω . (45)

It should be noted that, contrary to former theoretical
approaches [30], no empirical parameters, especially
those referring to the relaxation time, are used in the
present calculations.

The formula (45) can serve in an estimate of the
electron effective mass from the relation

meff

m
=

Ω
ext(observed)
0

Ω
ext(theor)
0

, (46)

on condition an ordinary electron mass is applied in
expressing the observed resonance frequency with the
aid of the strength of the magnetic field.

In Table 2, we compare the calculated data of the
resonance frequency Ω

ext(theor)
0 obtained from (45), the

imposed modulation frequency ω , and the experimen-
tal resonance frequency Ω

ext(observed)
0 (in radians per

second). By taking into account (46), the effective elec-
tron masses for aluminium, zinc, antimon, and cad-
mium metals can be deduced.

A better agreement between the theoretical and ex-
perimentally estimated effective mass seems to be ob-
tained for cadmium and antimom, a worse result is for

aluminium and zinc. It should be noted, however, that
no geometrical parameters concerning the metal sam-
ple are taken into account in deriving the formula (45).

6. Summary

In the first step, the thermal electron magnetore-
sistance of metals has been theoretically examined.
This effect is approximately proportional to the elec-
tric magnetoresistance, therefore its dependence on the
magnetic induction is linear, in agreement with the ob-
served data.

A more delicate problem is a dependence of the
slope of increase of the thermal magnetoresistance on
temperature. Roughly that behaviour should be also
similar to the electric magnetoresistance which means
a proportionality of the thermal effect to the relax-
ation time τel of the electric resistance. Since τel in-
creases with a lowering of temperature, a similar prop-
erty should apply for the thermal magnetoresistance.
This lowering effect of the temperature increase on
the electric magnetoresitance and thermal magnetore-
sitance is in fact confirmed by the data obtained in ex-
periments.

The next point considered was the change of the
metal reflectance due to the change of the strength of
the magnetic induction B. In this case the part τmagn of
the effective relaxation time τeff dependent on B plays
a dominant role. Because the reflectance occurs to be
inversely proportional to τmagn, and τ−1

magn ∼ B, the pro-
portionality of the reflectance to B – confirmed by ex-
periment – is an immediate result of the theory.

The last item considered is the energy loss spectrum
of the electron ensemble perturbed by a periodic signal.
When examined in the presence of an external mag-
netic field, the position of the extremum of the loss
spectrum with respect to the strength of the field is
found to become independent of any empirical param-
eter of the electron medium, for example the relaxation
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time. This position is defined solely by the signal fre-
quency multiplied by a constant number. An identifica-
tion of the frequency calculated at the extremum posi-
tion with the frequency supplied by the cyclotron reso-

nance allowed us to deduce the effective electron mass
in several metal cases. These numbers are not much
different from those estimated directly on the basis of
other experimental data.
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