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We obtain the similarity transformation and construct analytical soliton and similariton solutions
for the generalized nonlinear Schrödinger equation with varying dispersion, power-law nonlinearity,
and attenuation, which could describe the propagation of optical pulse in inhomogeneous fiber sys-
tems. Based on these solutions, we discuss dynamical behaviours of the chirped similariton and the
chirp-free soliton in the dispersion decreasing fiber and the periodic distributed system. In the first
soliton control system, we can control the compression and stretching by modulating the dispersion
parameter σ . The pulse is compressed for parameter σ > 0, while the pulse is stretched for parameter
σ < 0. In the second soliton control system, the snake-like propagation behaviour disappears little by
little and the period of waves gradually decreases with the increasing of the index of the power-law
nonlinearity. Compared with chirped similaritons, chirp-free solitons remain with the certain ampli-
tude and width in two systems.
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1. Introduction

During the last three decades, optical solitons
have been witnessed as good information carriers
for long distance trans-continental and trans-oceanic
communication and all-optical ultrafast switching de-
vices [1 – 3]. The possibility of the propagation of
solitons in optical fibers was theoretically predicted
by Hasegawa and Tappert [4] and was experimentally
demonstrated by Mollenauer et al. [5]. Moreover, the
so-called optical similariton [6 – 10], which appears
when the coaction of nonlinearity, dispersion, and gain
in a high-power fiber amplifier causes the shape of
an arbitrary input pulse to converge asymptotically to
a pulse with a self-similar shape, recently has flour-
ished into a research area of great importance and in-
terest in many different contexts of nonlinear optics be-
cause it can tolerate strong nonlinearity without wave
breaking and enhance linearity of chirp [11] compared
with a soliton. Meanwhile, recently nonautonomous
solitons in Bose–Einstein condensates have been re-
ported [12].

In the picosecond regime, the nonlinear evolution
equation that takes into account this balance between
the group velocity dispersion (GVD) and the self-phase
modulation (SPM) and which describes the dynamics
of solitons is the well-known nonlinear Schrödinger
equation (NLSE) with Kerr nonlinearity. However,
communication grade optical fibers or as a matter of
fact any optical transmitting medium does possess a fi-
nite attenuation coefficient, thus optical loss is in-
evitable, and the pulse is often deteriorated by this loss.
Due to the nonsaturable nature of fiber, the Kerr non-
linearity is inadequate to describe the soliton dynamics
in the ultrahigh bit rate transmission. When the trans-
mission bit rate is very high, the peak power of the in-
cident field accordingly becomes very large for soliton
formation. Thus higher-order (power-law) nonlineari-
ties may become significant even at moderate intensi-
ties in certain materials such as semiconductor doped
glass fibers. Under circumstances, as mentioned above,
non-Kerr law nonlinearities come into play changing
essentially the physical features of optical soliton prop-
agation [13, 14]. More material realization for non-
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Kerr law nonlinearities can be found in [15]. There-
fore, when a very high bit rate transmission or trans-
mission through materials with higher nonlinear coef-
ficients are considered, it is necessary to take into ac-
count higher-order nonlinearities. This problem can be
addressed by incorporating the non-Kerr law nonlin-
earity in the NLSE. Spatial solitons have been investi-
gated in media that have a power-law dependence on
the intensity In for continuum values of n (with I being
the intensity) [16, 17].

In a real fiber, the core medium is not homoge-
neous [18]. There will always be some nonuniformity
due to many factors, and important among them are:

(i) that which arises from a variation in the lattice pa-
rameters of the fibre medium, so that the distance
between two neighbouring atoms is not constant
throughout the fibre,

(ii) that due to the variation of the fibre geometry (di-
ameter fluctuations, etc).

These nonuniformities influence various effects such
as attenuation (or gain), dispersion, phase modulation,
etc. Thus, in order to model these features in the soli-
ton dynamics, from a practical standpoint, the variable
coefficient NLSE with power-law nonlinearity should
be considered as follows [19]:

iuz +
1
2

β (z)utt +gm(z)|u|2mu = iγ(z)u , (1)

where u(z, t) is the complex envelope of the electrical
field in the moving frame, z the coordinate along the
propagation direction, and t the reduced time. All co-
ordinates are made dimensionless by the choice of co-
efficients. The function β (z) represents the dispersion
coefficient and γ(z) the gain (γ > 0) or loss (γ < 0) co-
efficient. The functions gm(z) for m = 1,2, . . . ,n stand
for the nonlinearities of orders up to 2n+1. For m = 1,
one has the simple Kerr nonlinearity, for m = 2 the
quintic, for m = 3 the septic, and so on. For Kerr
nonlinearity, many authors obtained soliton and sim-
ilariton solutions [8 – 10, 20, 21]. For quintic nonlin-
earity, Senthilnathan et al. [22] discussed a self-similar
Townes soliton. In [18], authors obtained travelling
wave and soliton solutions of (1) by means of a direct
method. The motivation of this paper is to look for ex-
act similariton solutions of the generalized NLSE with
power-law nonlinearity via the similarity transforma-
tion method.

The NLS-type equation with variable coefficients
has been extensively investigated [20 – 28] as the gov-
erning equation for optical soliton control, which is an
important development in the application of solitons
after the first soliton dispersion management experi-
ment in a fiber with hyperbolically decreasing group
velocity dispersion was realized by Dianov’s group at
the General Physics Institute [29]. Then controlling op-
tical solitons in soliton communication systems and
generating soliton train have been effectively realized
as early as in 1991 [30]. Therefore, the concept of con-
trol of soliton propagation described by the NLSE (1)
with power-law nonlinearity is a new and important
development in the application of solitons for optical
communication systems. However, to our knowledge,
the control of soliton and similariton for NLSE (1) in
dispersion decreasing fiber (DDF) is hardly studied,
which is discussed in this paper.

2. Soliton and Similariton Solutions

In order to construct the relation between the
variable-coefficient NLSE (1) with power-law nonlin-
earity and the constant-coefficient one,

iUZ +
1
2

BUT T +Gm|U |2mU = 0 , (2)

we construct the similarity transformation

u(z, t) = ρ(z)U [T (z, t),Z(z)]exp[iφ(z, t)] , (3)

where B and Gm are both real constants, describing dis-
persion and nonlinearity, respectively. Moreover, the
amplitude ρ(z) and the phase φ(z, t) satisfy

ρ = ρ0C1/2
p exp[Γ (z)] ,

φ =−
c0Cp(z)

2
t2− l0Cp(z)t−

l2
0

2
Cp(z)D(z) ,

(4)

and the effective propagation distance Z(z) and simi-
larity variable T (z, t) are also real functions in the form

Z =
Cp(z)D(z)

BW 2
0

, T =
t− tc(z)

W (z)
, (5)

with the width of pulse W (z) = W0/Cp(z), position of
pulse tc(z) = t0− (l0 +c0t0)D(z), the accumulated dis-
persion and gain/loss D(z) =

∫ z
0 β (s)ds and Γ (z) =∫ z

0 γ(s)ds. Here Cp(z) = [1− c0D(z)]−1 is related to
the wave front curvature and presents a measure of
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the phase chirp imposed on the wave. The subscript
0 denotes the initial values of the given functions at
distance z = 0. Note that the accumulated dispersion
D(z) influences the form of the amplitude, the width,
the phase, the chirp, and the effective propagation dis-
tance. Here free parameters have very clear physical
meaning: c0 and l0 are the initial curvature and posi-
tion of the wavefront, ρ0 denotes the initial amplitude
of the pulse center, W0 is related to the initial similari-
ton width. Also note that from (3) with (4) and (5),
soliton solutions can be obtained by setting c0 = 0.
Similaritons have as essential feature the linear chirp
(c0 6= 0), which leads to an efficient compression or
amplification and thus are particularly useful in the de-
sign of optical fiber amplifiers and optical pulse com-
pressors [31].

Especially, if the parameters of dispersion, nonlin-
earity, and gain/loss satisfy the constraints

γ(z) =
1

2m

[
W{gm(z),β (z)}

gm(z)β (z)
+

(m−2)c0β (z)
1− c0D(z)

]
,

m = 1,2, . . . ,n ,

(6)

with the notation for the Wronskian W{gm(z),β (z)}=
gmβz−βgm,z and by solving easier constant-coefficient
NLSE (2), we can obtain abundant solutions of (1) via
the one-to-one correspondence (3) with (4) and (5).

Equation (6) can be conveniently understood as the
integrability conditions on (1). This condition indi-
cates that the connection of the coefficient β (z), non-
linear coefficients gm(z), and gain/loss coefficient γ(z)
strongly affects the form and the behaviour of soli-
tons and similaritons. Hence, the solution found can
exist only under certain conditions and the system pa-
rameter functions cannot be all chosen independently.
For example, if β (z) and gm(z) are chosen to be free
parameters, then γ(z) will be determined from (6).
Note that the condition (6) includes many special cases
in [22, 32]. For m = 1, to obtain exact solutions in
a lossy medium, the nonlinearity coefficient must grow
exponentially. This condition is the one expressed
in [32, (8)]. For m = 2, this condition includes the one
expressed in [22, (5)]. Thus we can choose the equa-
tion parameters suitably to investigate the dynamic be-
haviours for solutions of (1). This choice of real system
can be found as systems (8) and (10) in Section 3.

For Kerr nonlinearity (m = 1), the reduced equa-
tion (3) is the standard NLSE. From the one-to-one
correspondence (3) with c0 = 0 in (4) and (5), and

based on the corresponding bright and dark soliton so-
lutions of the standard NLSE, we can obtain bright
and dark soliton solutions expressed in [32, (11) and
(12)] of (1) with m = 1. When c0 6= 0, our result (3)
with (4) and (5) here is the corresponding solution ex-
pressed in [33, (2) with (6) – (9)]. For quintic nonlin-
earity (m = 2), the reduced equation (3) is the constant-
coefficient quintic NLSE, from whose corresponding
bright soliton solution and transformation (3), we can
obtain the chirped Townes soliton expressed in [22,
(28)].

Here we focus on soliton and similariton solutions
of the general power-law nonlinearity. Employing the
corresponding solutions of (2) and the transforma-
tion (3) with (4) and (5), and considering the constraint
condition (6), we have bright soliton and similariton
solutions of (1) as follows:

u =
ρ0

[1− c0D(z)]1/2
cosh−

1
m (ξ )

· exp [Γ (z)− iΦ(z, t)] ,
(7)

where

ξ =

√
2m2Gm

(m+1)B

{
Cp(z) [t +(l0 + c0t0)D(z)− t0]

W0

− κ

W 2
0

·Cp(z)D(z)
}

,

Φ(z, t) =
c0Cp(z)

2
t2 +

(
l0−

κ

W0

)
Cp(z)t

+
{

l2
0

2
− l0 + c0t0

W0
− κ2−2Gm/ [(m+1)B]

2W 2
0

}
·Cp(z)D(z)− κt0

W0
Cp(z)

with constant κ . Here solution (7) with c0 = 0 and
c0 6= 0 represents soliton and similariton solutions, re-
spectively.

3. Dynamical Behaviours

In this section, we will analyze the mechanism on
how the relevant properties of soliton and similariton
solutions are affected in two different soliton control
systems. Firstly, let us consider the compression prob-
lem of the laser pulse in a DDF with the dispersion and
nonlinearity parameter [32] according to

β (z) = β0 exp(−σz), gm = gm0 exp(αz) , (8)
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Fig. 1 (colour online). Chirped bright similariton expressed by (7). The parameters are taken as m = 2, B = 2, G2 = g20 = 1,
β0 = W0 = 0.5, l0 = 0.1, α =−0.05, κ =−0.3,c0 =−0.04 with (a) σ = 0.1 and (c) σ =−0.1. (b) and (d): sectional view of
(a) and (c) at distances z = 0,10,20, respectively.

where β0 > 0, gm0 > 0, and σ 6= 0. In optical sys-
tem (8), (6) yields the distributed gain

γ(z) =− 1
2m

{
σ +α−σ(m−2)c0β0 exp(−σz)

σ + c0β0[exp(−σz)−1]

}
. (9)

It is clear to see that for the chirped similariton (c0 6= 0)
if the nonlinearity parameter gm(z) (i. e. α = 0) is con-
stant and m = 3, c0 = σ/β0, or if m = 2 and σ =−α ,
the gain can be completely balanced out. For chirp-free
self-similar waves (c0 = 0), if σ = −α , then the gain
can be also completely balanced out.

The coaction of nonlinearity, dispersion, and gain
causes the shape of input pulse to converge asymp-

totically to a pulse whose shape is self-similar. Fig-
ure 1 displays the dynamical behaviours for the inten-
sity I = |u|2 of chirped bright similaritons for quin-
tic media (m = 2) in the dispersion decreasing and
increasing fibers (8). Note that in the dispersion de-
creasing fiber, the amplitude of the chirped bright sim-
ilariton decreases, while it increases in the dispersion
increasing fiber. The compression and stretching of
similaritons are shown in Figures 1b and d by modu-
lating parameter σ . Here, for the convenience of com-
parison, we shifted the center of the similariton to the
initial location. Moreover, the amplitude of the bright
similariton in the dispersion decreasing fiber decreases
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Fig. 2 (colour online). Chirp-free bright soliton with c0 = 0 corresponding to Figure 1a. The parameters are chosen as that
in Figure 1a except for σ =−α = 0.1.

more dramatically than the counterpart in the disper-
sion increasing fiber. These results obtained in this
paper may have potential values for all-optical data-
processing schemes and the design of pulse compres-
sors and amplifiers. For the chirp-free bright soliton,
due to c0 = 0, the amplitude and width are unchanged
from the analytical result (7) and graphically descrip-
tion in Figure 2.

We find that different cases appear in higher-order
power-law nonlinearity. When m ≤ 3, the amplitude
and width of the bright similariton in the dispersion
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Fig. 3 (colour online). Chirped bright similariton expressed by (7) with (a) m = 4 and (b) m = 5 in the DDF. The parameters
are chosen as that in Figure 1a.

decreasing fiber both decrease along the propagation
distance z, yet when m > 3, the cases are more compli-
cated. From Figure 3, at first, the amplitude and width
of the bright similariton in the dispersion decreasing
fiber increase, and then the amplitude and width of it
gradually decrease along the propagation distance z.
Moreover, compared with Figure 3a and b, this vari-
ation is gradually slow with the increasing of the index
of the power-law nonlinearity from m = 4 to m = 5.

Next, we take the following periodic distributed sys-
tem with the varying group velocity dispersion and
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Fig. 4 (colour online). (a) Chirped bright similariton with c0 = −0.4 and (b) chirp-free bright soliton with c0 = 0 expressed
by (7) in a periodic distributed system. The parameters are chosen as that in Figure 1a except for δ1 = δ2 = 0.5.
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Fig. 5 (colour online). Chirped bright similariton expressed by (6) with (a) m = 3 and (b) m = 5 in a periodic distributed
system. The parameters are chosen as that in Figure 4a.

nonlinear coefficient [24, 34]:

β (z) = β0 cos(δ1z) , gm(z) = gm0 cos(δ2z) , (10)

where β0 and δ1 describe the dispersion, gm0 and δ2 are
the parameters describing the power-law nonlinearity.

In this system, the bright similariton exhibits
a snake-like propagation behaviour. From Figure 4a,
amplitude and width of the chirped bright similari-
ton vary periodically, while amplitude and width of
the chirp-free bright soliton remain with certain values
[c. f. Figure 4b]. From Figure 4a with m = 2, Figure 5
a with m = 3 to Figure 5b with m = 5, this snake-like
propagation behaviour disappears little by little with

the increasing of the index of power-law nonlinearity.
When m = 5, separated humps appear in Figure 5b.
Moreover, the period of waves gradually decreases
with the increasing power-law nonlinearity from m = 2
to m = 5.

4. Conclusions

In conclusion, we have derived analytical self-
similar solutions for the generalized nonlinear
Schrödinger equation with power-law nonlinearity.
Based on these solutions, we discussed the dynamical
behaviours of the chirped similariton and the chirp-
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free soliton in the DDF and the periodic distributed
system. In the first soliton control system, the pulse
is compressed for parameter σ > 0, while the pulse is
stretched for parameter σ < 0. That is to say, we can
control the compression and stretching by modulating
the parameter σ . In the second soliton control system,
the snake-like propagation behaviour disappears
little by little and the period of waves gradually
decreases with the increasing power-law nonlinearity.
Compared with the chirped similaritons, the chirp-free
solitons remain with the certain amplitude and width
in the two systems. These analytical findings here
can be expected to assist in areas such as optical
fiber compressors, optical fiber amplifiers, nonlin-
ear optical switches, optical communications, and
long-haul telecommunication networks for achieving
pulse compression. Of course, due to the lack of

an experimental and designed basis related to these
theoretical results, we could not give further details
about the real physical application. More practical
implementation of this theoretical method to other
important models, such as the Ginzburg–Landau
equation arising in Bose–Einstein condensates and
some optical materials, might be an interesting
task.
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