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We study a Hamilton operator Ĥ for spin-1/2 with triple spin interactions. The eigenvalues and
eigenvectors are determined and the unitary matrices exp(−iĤt/h̄) are found. Entanglement of the
eigenvectors is investigated. A Hamilton operator K̂ for spin-1 and triple spin interaction is also
discussed.
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1. Introduction

In quantum theory Hamilton operators with spin-
interactions have a long history [1 – 5]. Triple spin in-
teraction have been studied by several authors [6 – 19].
Iglói [6] investigated an Ising model with three-spin
interaction by finite-size scaling and applying free
boundary conditions. Vanderzande and Iglói [7] stud-
ied the critical behaviour and logarithmic corrections
of a quantum model with three-spin interaction. Al-
caraz and Barber [8] and Wittlich [9] studied a one-
dimensional Ising quantum chain with 3N sites with
staggered three-spin coupling and periodic boundary
conditions. Somma et al. [10] studied the unitary oper-
ator U(t) = exp(iωtσ1⊗σ3⊗σ2). Here σ1, σ2, σ3 are
the Pauli spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Pachos and Plenio [11] studied three-spin interac-
tions in optical lattices. Three qubit Hamilton oper-
ators and Riemannian geometry has been discussed
by Brandt [12]. Using the mean field method Jiang
and Kong [13] studied a spin-1 quantum Ising model
with three-spin interaction. Wang et al. [14] investi-
gated the bifurcation in ground-state fidelity for a one-
dimensional spin model with competing two-spin and
three-spin interactions. Lanyon et al. [15] considered
among others the triple-spin operator σ3⊗σ1⊗σ1 for
universal digital quantum simulation with trapped ions.
Topilko et al. [16] considered magnetocaloric effects in

spin-1/2 XX chains with three-spin interactions. Zhang
et al. [17] investigated the geometric phase of a qubit
symmetrically coupled to a XY-spin chain with three
spin interaction in a transverse magnetic field. The
Greenberger–Horne–Zeilinger (GHZ) state and triple-
spin operators σ1⊗σ2⊗σ2, σ2⊗σ1⊗σ2, σ2⊗σ2⊗
σ1, σ1⊗σ1⊗σ1 have been discussed by Aravind [18]
in connection with Bell’s theorem without inequalities.
A nonlinear eigenvalue problem with triple-spin inter-
action has been solved by Steeb and Hardy [19]. Here
we consider triple-spin interaction and entanglement
for spin-1/2 systems. Spin-1 systems will also be dis-
cussed.

We consider the Hamilton operator with triple-spin
interaction of spin-1/2,

Ĥ = h̄ω1(σ1⊗ I2⊗ I2+I2⊗σ2⊗ I2+I2⊗ I2⊗σ3)
+ h̄ω2(σ1⊗σ2⊗ I2+σ1⊗ I2⊗σ3+I2⊗σ2⊗σ3)
+ h̄ω3(σ1⊗σ2⊗σ3) ,

where σ1, σ2, σ3 are the Pauli spin matrices, and I2
is the 2× 2 unit matrix. Thus the Hamilton operator
Ĥ acts in the Hilbert space C8. The Pauli matrices are
hermitian and unitary with σ2

1 = σ2
2 = σ2

3 = I2. The
eigenvalues are +1 and−1 with the corresponding nor-
malized eigenvectors

u1 =
1√
2

(
1
1

)
, u−1 =

1√
2

(
1
−1

)
,

v1 =
1√
2

(
1
i

)
, v−1 =

1√
2

(
1
−i

)
,
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w1 =
(

1
0

)
, w−1 =

(
0
1

)
.

We calculate the unitary matrix U(t) = exp(−iĤt/h̄)
to solve the Schrödinger and Heisenberg equation of
motion. These unitary operators are applied to en-
tangled and unentangled states. Entangled and un-
entangled states can be found depending on the pa-
rameters h̄ω1, h̄ω2, h̄ω3. As entanglement measure
for the Hamilton operator Ĥ, we consider the three-
tangle.

2. A Theorem

For the calculation of the eigenvalues and eigenvec-
tors of the Hamilton operator Ĥ, we utilize the follow-
ing theorem [20, 21]. Let A1, A2, A3 be n×n matrices
over C and In be the n× n unit matrix. Consider the
matrix

M = c1(A1⊗ In⊗ In + In⊗A2⊗ In + In⊗ In⊗A3)
+ c2(A1⊗A2⊗ In +A1⊗ In⊗A3 + In⊗A2⊗A3)
+ c3(A1⊗A2⊗A3) ,

where c1, c2, c3 are constants. Since the terms in M
commutate pairwise, we can write exp(M) as

eM = ec1A1⊗In⊗In ec1In⊗A2⊗In ec1In⊗In⊗A3 ec2A1⊗A2⊗In

· ec2A1⊗In⊗A3 ec2In⊗A2⊗A3 ec3(A1⊗A2⊗A3) .

If |u〉, |v〉, |w〉 are eigenvectors of A1, A2, A3, respec-
tively, with eigenvalues λ , µ , ν , we find the eigenvec-
tor |u〉⊗ |v〉⊗ |w〉 of M with the eigenvalue

c1(λ + µ +ν)+ c2(λ µ +λν + µν)+ c3(λ µν) .

Then |u〉⊗ |v〉⊗ |w〉 is also an eigenvector of eM with
the corresponding eigenvalues

c1(λ + µ +ν)+ c2(λ µ +λν + µν)+ c3(λ µν) .

If the matrices A1, A2, A3 have the additional properties
that A2

1 = A2
2 = A2

3 = In (spin- 1
2 case with n = 2), we

obtain

ec3A1⊗A2⊗A3 = (In⊗ In⊗ In)cosh(c3)
+(A1⊗A2⊗A3)cosh(c3) .

If the matrices A1, A2, A3 have the additional properties
that A3

j = A j with j = 1,2,3 (spin-1 case with n = 3),
we obtain

ec3A1⊗A2⊗A3 = In⊗ In⊗ In +(A1⊗A2⊗A3)sinh(c3)

+(A2
1⊗A2

2⊗A2
3)(cosh(c3)−1) .

3. Spin-1/2 Case

The eight normalized eigenvectors of Ĥ can be con-
structed from the normalized eigenvectors of σ1, σ2,
σ3 and the Kronecker products

e111 = u1⊗v1⊗w1 ,

e11−1 = u1⊗v1⊗w−1 ,

e1−11 = u1⊗v−1⊗w1 ,

e1−1−1 = u1⊗v2⊗w2 ,

e−111 = u−1⊗v1⊗w1 ,

e−11−1 = u−1⊗v1⊗w−1 ,

e−1−11 = u−1⊗v−1⊗w1 ,

e−1−1−1 = u−1⊗v−1⊗w−1

with the corresponding eight eigenvalues

E111 = h̄(3ω1 +3ω2 +ω3) ,
E11−1 = h̄(ω1−ω2−ω3) ,
E1−11 = h̄(ω1−ω2−ω3) ,
E1−1−1 = h̄(−ω1−ω2 +ω3) ,
E−111 = h̄(ω1−ω2−ω3) ,
E−11−1 = h̄(−ω1−ω2 +ω3) ,
E−1−11 = h̄(−ω1−ω2 +ω3) ,
E−1−1−1 = h̄(−3ω1 +3ω2−ω3) ,

where E11−1 = E1−11 = E−111 and E1−1−1 = E−11−1 =
E−1−11. The eigenvalues E111 and E−1−1−1 are not de-
generate. Note that the eight normalized eigenvectors
are pairwise orthogonal. Thus we have (spectral de-
composition)

Ĥ = ∑
j,k,`∈{1,−1}

E jk`e jk`e
∗
jk` .

Now the unitary matrix U(t) = e−itĤ/h̄ can be con-
structed from the normalized eigenvectors and eigen-
values of Ĥ via

e−itĤ/h̄ = ∑
j,k,`∈{1,−1}

e−iE jk`t/h̄e jk`e
∗
jk` .

We find
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U(t) =



u11(t) 0 u13(t) 0 u15(t) 0 u17(t) 0
0 u22(t) 0 u24(t) 0 u26(t) 0 u28(t)

u31(t) 0 u33(t) 0 u35(t) 0 u37(t) 0
0 u42(t) 0 u44(t) 0 u46(t) 0 u48(t)

u51(t) 0 u53(t) 0 u55(t) 0 u57(t) 0
0 u62(t) 0 u64(t) 0 u66(t) 0 u66(t)

u71(t) 0 u73(t) 0 u75(t) 0 u77(t) 0
0 u82(t) 0 u84(t) 0 u86(t) 0 u88(t)



with

u11(t) = u33(t) = u55(t) = u77(t)

= e−iE1t/h̄/4+ e−iE2t/h̄/2+ e−iE4t/h̄/4 ,

u13(t) =−u31(t) =−i e−iE1t/h̄/4+ i e−iE4t/h̄/4 ,

u15(t) = u51(t) = e−iE1t/h̄/4− e−iE4t/h̄/4 ,

u17(t) =−u71(t)

=−i e−iE1t/h̄/4− i e−iE4t/h̄/4+ i e−iE2t/h̄/2 ,

u22(t) = u44(t) = u66(t) = u88(t)

= e−iE2t/h̄/4+ e−iE4t/h̄/2+ e−iE8t/h̄/4 ,

u24(t) =−u42(t) =−i e−iE2t/h̄/4+ i e−iE8t/h̄/4 ,

u26(t) = u62 = e−iE2t/h̄/4− e−iE8t/h̄/4 ,

u28(t) =−u82

=−i e−iE2t/h̄/4+ i e−iE4t/h̄/2− i e−iE8t/h̄/4 ,

u35(t) =−u53

= i e−iE1t/h̄4− i e−iE2t/h̄/2+ i e−iE4t/h̄/4 ,

u37(t) = u73 = e−iE1t/h̄/4− e−iE4t/h̄/4 ,

u46(t) =−u64

= i e−iE2t/h̄/4− i e−iE4t/h̄/2+ i e−iE8t/h̄ ,

u48(t) = u84 = e−iE2t/h̄/4− i e−iE8t/h̄/4 ,

u57(t) =−u75 =−i e−iE1t/h̄/4+ i e−iE4t/h̄/4 ,

u68(t) =−u86 =−i e−iE2t/h̄/4+ i e−iE8t/h̄/4

with 1↔ 111, 2↔ 11−1, 3↔ 1−11, 4↔ 1−1−1,
5↔−111, 6↔−11−1, 7↔−1−11, 8↔−1−1−
1.

4. Entanglement

Entangled quantum states are an important compo-
nent of quantum computing techniques such as quan-
tum error-correction, dense coding, and quantum tele-
portation [21 – 27]. Entanglement is the characteristic

trait of quantum mechanics which enforces its entire
departure from classical lines of thought. We consider
entanglement of pure states. Entanglement of Hamil-
ton operators with triple-spin interaction has not been
considered so far.

The eigenvectors given above are product states and
hence not entangled. However, some of the eigenvalues
are degenerate (E2 = E3 = E5 and E4 = E6 = E7) and
thus we can form linear combinations of these eigen-
vectors which are again eigenvectors and can be entan-
gled.

An N-tangle can be defined for the finite dimen-
sional Hilbert space H = C2N

, with N = 3 or N even.
Two-level and higher-level quantum systems and their
physical realization have been studied by many au-
thors. We consider the finite-dimensional Hilbert space
H= C2N

and the normalized states

|ψ〉=
1

∑
j1, j2,..., jN=0

c j1, j2,..., jN | j1〉⊗ | j2〉⊗ · · ·⊗ | jN〉

in this Hilbert space. Here |0〉, |1〉 denotes the standard
basis. Let ε jk ( j,k = 0,1) be defined by ε00 = ε11 = 0,
ε01 = 1, ε10 = −1. Let N be even or N = 3. Then an
N-tangle can be introduced by [27]

τ1...N = 2

∣∣∣∣∣ 1

∑
α1,...,αN=0

...
δ1,...,δN=0

cα1...αN cβ1...βN
cγ1...γn cδ1...δN

· εα1β1
εα2β2

· · ·εαN−1βN−1
εγ1δ1

εγ2δ2

· · ·εγN−1δN−1
εαN γN εβN δN

∣∣∣∣∣ .
This includes the definition for the 3-tangle with N =
3. A computer algebra program to find the N-tangle is
given by Steeb and Hardy [28].
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Consider N = 3 and the GHZ-state and the W -state

|GHZ〉= 1√
2



1
0
0
0
0
0
0
1


, |W 〉= 1√

3



0
1
1
0
1
0
0
0


.

Then we find for the GHZ-state that τ = 1 and τ = 0
for the W -state. Note that the |W 〉 state is not separable.

Consider the triple-spin interaction Hamilton opera-
tor

ĤT

h̄ω
= σ1⊗σ2⊗σ3 .

The eigenvalues are +1 (fourfold) and −1 (fourfold).
A set of normalized eigenvectors are the separable
states (and thus not entangled) given above. Owing to
the degeneracy of the eigenvalue +1 (and analogously
for the eigenvalue −1), we can form linear combina-
tions of these separable eigenstates that are fully entan-
gled. From the four separable eigenstates with eigen-
value +1(

1
1

)
⊗
(

1
1

)
⊗
(

1
1

)(
1
1

)
⊗
(

1
1

)
⊗
(

1
1

)
(

1
1

)
⊗
(

1
1

)
⊗
(

1
1

)(
1
1

)
⊗
(

1
1

)
⊗
(

1
1

)
,

we find by linear combinations the fully entangled
eigenstates (using the three tangle described above)
with eigenvalue +1

1
2



1
1
0
0
0
0
i
−i


,

1
2



0
1
i
0
1
0
0
−i


,

1
2



0
0
i
−i
1
1
0
0


,

1
2



0
1
i
0
1
0
0
i


.

The four vectors are also linearly independent. Anal-
ogously we can make this construction for the eigen-
value −1 to find fully entangled states, i. e. the three
tangle is τ = +1.

5. Spin-1 Case

Consider the Hamilton operator with triple-spin in-
teraction with spin-1 system with the Hamilton opera-
tor

K̂ = h̄ω1(s1⊗ I3⊗ I3 + I3⊗ s2⊗ I3 + I3⊗ I3⊗ s3)
+ h̄ω2(s1⊗ s2⊗ I3 + s1⊗ I3⊗ s3 + I3⊗ s2⊗ s3)
+ h̄ω3(s1⊗ s2⊗ s3) ,

where s1, s2, s3 are the trace-less and hermitian 3× 3
matrices

s1 =
1√
2

0 1 0
1 0 1
0 1 0

 , s2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 ,

s3 =

1 0 0
0 0 0
0 0 −1

 ,

and I3 is the 3× 3 identity matrix. The Hamilton op-
erator K̂ acts in the Hilbert space C27. Here one can
investigate whether the state in C27 can be written as
a product state of two vectors in C9 and C3, C3 and
C9, or C3, C3 and C3. Note that s3

j = s j for j = 1,2,3
and thus s4

j = s2
j for j = 1,2,3. The eigenvalues of the

matrices s1, s2, s3 are given by +1, 0,−1. The normal-
ized eigenvectors for s1 are

u1 =
1
2

 1√
2

1

 , u0 =
1√
2

 1
0
−1

 ,

u−1 =
1
2

 1
−
√

2
1

 .

The normalized eigenvectors for s2 are

v1 =
1
2

 1√
2i
−1

 , v0 =
1√
2

1
0
1

 ,

v−1 =
1
2

 1
−
√

2i
−1

 .

The normalized eigenvectors for s3 is the standard ba-
sis denoted by w1, w0, w−1. Thus the 27 normalized
eigenvectors (separable states) are given by

e jk` = u j⊗vk⊗w`, j,k, ` = 1,0,−1
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with the 27 eigenvalues

E jk` = h̄ω1( j + k + `)+ h̄ω2( jk + j`+ k`)
+ h̄ω3( jk`) .

Now for the unitary matrix V (t) = e−itK̂/h̄, we find

V (t) = ∑
j,k,`∈{1,0,−1}

e−iE jk`t/h̄e jk`e
∗
jk` .

Note that for z ∈ C, we have

ezs1⊗I3⊗I3 = I3⊗ I3⊗ I3 +(s1⊗ I3⊗ I3)sinh(z)

+(s2
1⊗ I3⊗ I3)(cosh(z)−1) ,

ezs1⊗s2⊗I3 = I3⊗ I3⊗ I3 +(s1⊗ s2⊗ I3)sinh(z)

+(s2
1⊗ s2

2⊗ I3)(cosh(z)−1) ,
ezs1⊗s2⊗s3 = I3⊗ I3⊗ I3 +(s1⊗ s2⊗ s3)sinh(z)

+(s2
1⊗ s2

2⊗ s2
3)(cosh(z)−1).

With z =−iωt, we arrive at

e−iωts1⊗s2⊗s3 = I3⊗ I3⊗ I3− i(s1⊗ s2⊗ s3)sin(ωt)

+(s2
1⊗ s2

2⊗ s2
3)(cos(ωt)−1) .

For ω1 = 0, ω2 = 0, the eigenvalues are highly de-
generate, and we can form eigenvectors which are
entangled.

6. Conclusion

We have studied spin Hamilton operators with
triple-spin interaction. If the eigenvalues are degener-
ate then by linear combinations, we can construct en-
tangled states from unentangled states.
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