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H-1025 Budapest, Hungary

Reprint requests to I. B.; E-mail: bako.imre@ttk.mta.hu

Z. Naturforsch. 68a, 85 – 90 (2013) / DOI: 10.5560/ZNA.2012-0103
Received September 3, 2012 / published online February 15, 2013

Dedicated to Professor Alfred Klemm on the occasion of his 100th birthday

Neutron diffraction plays an important role in structural chemistry. In order to reveal the solution
structure, the partial radial distribution functions have to be determined by using isotope substitution
technique yielding different diffraction pattern while the structural parameters remain unchanged.
The extraction of parameters from the series of measurements thus reduces to solving a system of
linear equations that is affected by experimental errors. In this article, we give an estimation of the
size of this error and also directions on how to minimize this effect by properly selecting the systems
to be studied.
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1. Introduction

Neutron diffraction combined with isotopic substi-
tution (NDIS) [1 – 3] is an extremely powerful method;
it claims to yield unambiguous information about the
local atomic structure in disordered materials. It has
been applied successfully for many years, obtaining
the partial structure factors of a wide range of liq-
uids (i. e. water [4 – 7], ethanol [8], phenol [9], glu-
cose [9], formic acid [10], ethanediol [11], liquid mix-
tures [12 – 14], aqueous solutions [15], and polymer
electrolytes [16, 17] as well as of glassy materials. The
radial correlation or structure functions extracted from
NDIS experiments are very complicated. However,
many of their features can be assigned and interpreted
with the assistance of molecular dynamics (MD) or
Monte Carlo (MC) simulations of the same systems
under similar conditions. At the same time, the struc-
ture functions obtained can be used to test the quality
of potential model applied in MD or MC simulation.

The general principles of isotopic substitution in
neutron scattering are rather simple. Samples with dif-

ferent isotopic compositions (with markedly different
coherent scattering lengths) yield different diffraction
patterns while the underlying structural features re-
main unchanged. This method provides a convenient
way for separating the partial terms in the composite
structure factor. It has been applied for binary systems
RXn, where R denotes the central part of this system
without substitution, and X stands for the isotope to
be substituted. For example, in the case of water or
methanol, the oxygen atom or the CD3O group can be
denoted as R, respectively.

The underlying mathematical formalism of this
method is very straightforward. In order to determine
three different partial structure factors or radial distri-
bution functions (RR, RX , XX) in a binary system, at
least three independent experiments have to be per-
formed with different average scattering lengths for
X . In practice, this means that one has at the end to
solve a system of linear equations that has the follow-
ing form:

fi = WRR,iRR+WRH,iRX +WHH,iXX , (1)
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Fig. 1 (colour online). Contour plot of abs(det(W norm)) for water (a) and for ethanol (b).

where fi is the measured data set of ith isotopic sub-
stitution, and Wi j are corresponding elements of the
weighting matrix, e. g. for X = H/D:

WRR,i = b2
RR ,

WHH,i = (xH,i ·bH +(1− xH,i) ·bD)2 ,

WRH,i = 2 ·bRR · (xH,i ·bH +(1− xH,i) ·bD) ,

(2)

where xH,i is the mole fraction of the light hydrogen
in the exchangeable part of ith isotopic substitution of
a chemical substance.

Equation (1) can be written in matrix form as

f = W × x , (3)

where x = (RR,RH,HH)T, T denoting the transposed
matrix.

The aim of this study is to investigate how the solu-
tion of system (3) is affected by the magnitude of the
experimental relative errors. These considerations can
lead us to select the optimal parameter set for isotope
substitution experiments.

2. Application of the Theory

It has been shown that a careful perturbation anal-
ysis is capable of providing a realistic assessment of
the uncertainty and reliably indicates the sensitivity of
the solution to experimental errors [18 – 21]. The fol-
lowing inequality holds between the uncertainty in the
solution and the relative error of the experiment (|| de-

notes the corresponding vector and matrix norms):

||δX ||
||X ||

≤ ||W ||||W−1|| ||δ f ||
|| f ||

. (4)

The parameter κn (κn = ||W || × ||W−1||) is the so-
called condition number of the equation; it quantifies
the nearness to singularity: For values significantly
larger than 1, the matrix is ill conditioned. Equation (4)
shows that the condition number can be seen as a rel-
ative error magnification factor. The relative error in
the computed solution X (not to be confused with the
X above, which designates the isotope) may be much
larger than the relative error in f if the condition num-
ber κn is large.

In practice, the most common vector norms are the
l1, l2, and l∞ (Manhattan, Euclidean, and Chebyshev
norms). The vector norms can be defined in the fol-
lowing way:

||x||1 = ∑
i

abs(xi) , ||x||2 =
(

∑
i

x2
i

)0.5

,

||x||∞ = max(abs(xi))

(5)

and the corresponding matrix norms have the form

||W ||1 = max
j

∑
i

abs(Wi j) , ||W ||2 =
(

∑
i, j

W 2
i j

)0.5

,

||W ||∞ = max
i

∑
j

abs(Wi j)
(6)

(matrix 1-norm, Frobenius norm, matrix ∞-norm).
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Fig. 2 (colour online). Contour plot of the κ1, κ2, and κ∞ condition number for water (a) and for ethanol (b).

Furthermore, the condition number for the 2-norm
can be expressed in the form

κ2 =
σ(max)
σ(min)

, (7)

where σ(max) and σ(min) are the largest and small-
est singular values of the weighting matrix W . For
overdetermined (more equations than unknown vari-
ables) systems the expression (7) is still valid while
expression (4) holds for square matrices only.
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Fig. 3 (colour online). Three dimensional representation of
the optimum values obtained for xH . Points plotted represent
the optimal values and those within a 10% (lower part) and
20% (upper part) range of deviance for water (a) and ethanol
(b), respectively. The ends of the rods represent unity in the
direction of the three axes (xH,i).

According to our knowledge, these quantities have
never been used to determine the reliability of the par-
tial structure factors or the radial distribution functions
of molecular liquids. McGreevy and Pusztai [22] ap-
plied the matrix norm corresponding to the 11 vector
norm for quantifying the relative information content
of different total structure factors for glassy materials.
In an earlier study Edwards et al. [23] defined the de-

Table 1. Characteristic values of the numerical experiment: neutron scattering lengths (B in 10−14 m), optimal experi-
mental compositions (xH), extremum values of the condition numbers defined acording to thevarious norms (κi), and
abs(det(W norm)).

Water Methanol Ethanol Formic acid Ethane diol
BR 0.583 3.248 5.246 2.497 3.828
BH −0.774 −0.374 −0.374 −0.374 −0.774
BD 1.334 0.667 0.667 0.667 1.334
xH,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
xH,2 0.62 0.44 0.64 0.50 0.50 0.50 0.50
xH,3 1.0 0.81 0.89 1.0 1.0 1.0 1.0
κ1 10.76 124.8 316 75.1 46.4
κ2 6.77 83.07 215 49.2 29.2
κ∞ 10.80 113.44 258 74.5 49.2
abs(det(W norm)) 0.0, 0.948, 0.62, 1.00 0.00, 0.014, 0.50, 1.0 0.00, 0.0037, 0.50, 1.0 0.00, 0.020, 0.50, 1.00 0.00, 0.061, 0.50, 1.0
xH (4 data) 0.00, 0.52, 0.58, 0.88 0.00, 0.20, 0.78, 1.0 0.00, 0.22, 0.76, 1.0 0.00, 0.16, 0.72, 1.0 0.00, 0.66, 0.76, 1.0
κ2/4 2.65 5.49 8.94 4.11 3.42

terminant of the normalised weighting matrix as quan-
tifying the conditioning of the equation.

An element of normalised matrix is defined in the
form

W norm
i j =

Wi j

(∑ j W
2
i j)0.5

. (8)

An equation system is well-conditioned if the value
of abs(det(W norm)) is close to 1; if this value is signif-
icantly smaller than 1, it is regarded as ill-conditioned.

The condition number corresponding to the l2 Eu-
clidean norm has already been applied for testing the
accuracy of anomalous X-ray scattering by several au-
thors [24 – 27]. We study here the properties of the κ1,
κ2, and κ∞ condition numbers and of abs(det(W norm))
in the case of liquid water, methanol, ethanol, formic
acid, and 1,2-ethane-diol as examples of substances
available for isotopic substitution on exchangeable
(acidic) hydrogen.

3. Numerical Calculation and Results

Model calculations have been performed to obtain
parameters which allow to optimise the xH values for
NDIS experiments on the substances mentioned above.
The calculations were done using an in-house written
Fortran programme. Three nested loop (for the three
experiments) are used to determine numerically the κ1,
κ2, κ∞, and abs(det(W norm)) quantities for each xH set.
The resolution of the grid defined by the loops was
0.01 (0.00 ≤ xH,i ≤ 1.00 with 0.01 step size). From
this dataset those xH sets were selected where the cor-
responding conditional numbers and abs(det(W norm))
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have their minimum and maximum values, respec-
tively.

In this simplest case, the sizes of the f and xH vec-
tors of (3) are the same, i. e. three for the binary sys-
tems. In Table 1, the so-determined minimum values of
κ1, κ2, κ∞, and the maximum value of abs(det(W norm))
as well as the corresponding hydrogen atomic mole
fractions (xH) are listed.

The three matrix norms used in the calculations re-
sulted in three different hydrogen atomic mole frac-
tions for the extreme values of κ in the case of water.
For all other samples, the different norms yielded
the same atomic mole fractions at the extreme values
(xH = 1.00,0.50,0.00). For water, it can be clearly seen
that the optimal set of xH for the Manhattan norm and
the abs(det(W norm)) is the same: 1.00, 0.62 (close to
the null-mixture: xH,i = 0.64) and 0.00. The magnitude
of conditional values increases by an order from water
to methanol and ethanol.

Figures 1, 2a, and 2b represent the sensitivity of
xH,i to the κ and abs(det(W norm)), repectively. It can
be seen that the calculated conditional quantities are
rather insensitive in a certain xH,i range. Outside this
area of stability, these values change rapidly.

It is clear, that the size of the relative error of xH

can be lowered either by performing longer NDIS ex-
periments or by decreasing the conditional number.
Unfortunately, the beam-time is rather limited, thus it
is more effective to determine the partial distribution
functions from more than three experiments (overde-
termined system).

A numerical calculation with an f vector of size
four and xH of size three has been performed. In the
case of the NDIS experiment, this represent four dif-
ferently substituted sample. The corresponding norm
of this calculation is κ2/4, calculated according to (7).
It should be noted here that one of the four points is
held fixed in the calculation, namely that of the purely
deuterated sample (xH,1 = 0.00). The value of the con-

ditional number decreases by an order of one mag-
nitude compared to the previous calculations. On the
other hand, the addition of one more sample leads to
a decrease of the large difference between relative er-
rors for the various chemical substances. This result
suggests that trying to decrease the conditional number
is a more efficient strategy compared to longer NDIS
measurements.

In Figure 3a and Figure 3b, the isosurfaces of
κ2/4,min · 1.05 (lower part) and κ2/4,min · 1.20 (upper
part) for water and ethanol are plotted, respectively.
The length of the axes is unity and the free axes are
representing xH,i. Comparing the two parts of the fig-
ures, it can be seen that the sensitivity of κ2/4 to the
xH,i values is low.

For methanol, ethanol, and formic acid the mini-
mum values of κ2/4 resulted to be around 0.00, 0.20,
0.75 and 1.00 for xH . For water and ethane diol, this xH

set turned out to be different, as can be seen in Table 1.

4. Conclusion

The main message of this work is as follows: It is
recommended to perform more experiments with a rea-
sonable amount of statistics rather than the minimum
number of experiments with very good statistics. It
should be mentioned that in this work the effect of cor-
relation possibly existing between NDIS experimental
data points is not taken into account. Thus, the relative
error in the partials is only proportional to the calcu-
lated quantities.

A deeper investigation with more results will be the
matter of a forthcoming article.
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