Electrical Conductivity of Melts Containing Rare-Earth Halides. II. MCl-PrCl₃ (M = Li, Rb, Cs)

Alexei M. Potapov^a, Leszek Rycerz^b, Evgeniy S. Filatov^a, and Marcelle Gaune-Escard^c

- ^a Institute of High Temperature Electrochemistry, 22, S. Kovalevskaya Str., 620219 Ekaterinburg, Russia
- ^b Institute of Inorganic Chemistry and Metallurgy of Rare Elements, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
- ^c École Polytechnique, Département Mécanique Energétique, IUSTI-CNRS UMR 7343, Technopôle de Château Gombert, 5 rue Enrico Fermi, F-13453 Marseille Cedex 13, France

Reprint requests to M. G.-E.; Fax: +33 491 117439; E-mail: marcelle.gaune-escard@polytech.univ-mrs.fr

Z. Naturforsch. **68a**, 59–65 (2013) / DOI: 10.5560/ZNA.2012-0061 Received April 24, 2012 / published online February 15, 2013

The specific conductivity of molten LiCl-PrCl₃, RbCl-PrCl₃, and CsCl-PrCl₃ was measured from the liquidus temperature up to ~1180 K by a conventional ac technique. The molar conductivity Λ was calculated by using literature data on the densities of the binary systems. In all cases, it was found that the plot ln Λ vs. 1/T is not a straight line. Thereby the activation energy of the conductivity does not remain constant but reduces with increasing temperature. In the specific and molar conductivity isotherms, strong deviations from additivity are observed with maxima in a range 35–45 mol. % PrCl₃. The results conform to the idea of dominating octahedral local coordination of Pr³⁺ ions over the entire concentration range.

Key words: Rare Earth; Electrical Conductivity; Praseodymium; Alkali Chloride.

1. Introduction

In our first paper of this series, the conductivity of the molten MCl-NdCl₃ (M = Li-Cs) mixtures was considered [1]. In the present paper, we extend our investigations on the MCl-PrCl₃ systems (M = Li, Rb, Cs). Among the LnCl₃-containing systems, the majority of publications on conductivity and density is devoted to the molten systems containing PrCl₃ (and LaCl₃) [2–13]. However, researches of these systems still remain actual as there are essential discrepancies even among the last data.

The purpose of the present paper is to obtain reliable and systematic data on the electrical conductivity of the molten MCl-PrCl₃ mixtures.

2. Experimental

2.1. Chemicals

The chemicals LiCl, RbCl, and CsCl were purchased from ALPHA (99.5%). Prior to use, they were dehydrated by progressive heating up to fusion in the flow of gaseous hydrogen chloride. LiCl was treated for more than 6 h, while RbCl and CsCl for about 2 h. Excess HCl was removed from the melt by purging with argon (water content less than 2 ppm). The hygroscopic chemical PrCl₃ (minimum 99.9%) was synthesized from Pr_4O_{11} produced by Hydromet Co (Kowary, Poland). The synthesis of anhydrous PrCl₃ was similar to the synthesis of anhydrous NdCl₃ as described in detail in [14]. The fact that Pr_4O_{11} was a mixed valence oxide had no influence on the effectiveness of the chlorination process. The final step of this synthesis was the double distillation under reduced pressure (about 0.1 Pa). Storage and all handlings were performed under dry argon.

2.2. Apparatus and Procedure

The U-shaped conductivity cells made of transparent fused silica with platinum electrodes were used to measure the electrical conductivity. The cell was heated in a furnace controlled by a EUROTHERM

© 2013 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

regulator. The melt temperature was measured by means of a Pt-Rh10%Pt thermocouple with an accuracy ± 1 K. The cell resistance was measured using a radiometer CDM230 conductivity meter, its accuracy is $\pm 0.2\%$. The temperature and conductivity values were simultaneously recorded on a computer.

The detailed description of the used cell and the measurement procedure is given in [1].

3. Results and Discussion

3.1. Molten Praseodymium Chloride

The specific electrical conductivity of molten $PrCl_3$ was measured by several authors [2-13]. All these re-

sults are juxtaposed in Figure 1, and a noticeable difference among these data is observed. Our experimental data (see Table 1 and Figure 1) agree well with those, which appear to be the most reliable [3, 4, 7, 8, 11]. The maximum departure of our values from [3, 8, 11], which practically coincide, is +1.0%; from [7] +4.5%. There are several tens of percent difference compared with other results (up to 26%). The newest data [12]and [13] presents an essentially different slope of polytherms, and distinctions in conductivity reach 11% (at 1170 K).

It is well known that any impurities actually reduce the electrical conductivity. We believe that a such wide spread of results is a consequence of insufficient purity of the salts used and primarily of PrCl₃. Oxychlo-

Table 1. Specific conductivity κ [S/cm] of molten MCI-PrCl₃ (M = Li, Rb, Cs); *n*-number points in polytherm.

PrCl ₃ ,	$\kappa = A + B \cdot T + C \cdot T^2$		п	κ	к	ΔT [K]	-					
[mol.%]	A [S/cm]	$B \cdot 10^3 [{ m S}/({ m cm}{ m K})]$	$C \cdot 10^6 [\mathrm{S}/(\mathrm{cm}\mathrm{K}^2)]$		(1073 K)	(1173 K)						
LiCl-PrCl ₃												
0^{a}	-2.0647	12.127	-3.7641		6.615 ^b	6.981 ^b	917-1056					
4.985	-6.0508	19.504	-8.0302	433	5.632	5.779 ^b	862-1076					
10.01	-4.8662	15.647	-5.9365	624	5.088	5.319 ^b	844-1076					
19.90	-6.0854	15.945	-6.3271	640	3.739	3.912 ^b	780-1076					
25.04	-7.0518	17.067	-6.8017	647	3.431	3.610 ^b	760-1076					
31.03	-6.1847	14.433	-5.4409	577	3.037	3.258 ^b	736-1076					
39.70	-4.3461	9.5338	-2.7546	683	2.713	3.047 ^b	770-1075					
49.82	-5.1677	10.405	-3.3135	510	2.182	2.478 ^b	889-1076					
59.81	-4.9311	9.4434	-2.9112	609	1.850	2.140 ^b	945-1104					
69.76	-4.3631	7.8719	-2.2443	505	1.500	1.783 ^b	962-1098					
79.94	-3.7191	6.3006	-1.5497	405	1.258	1.539 ^b	1029-1111					
89.76	-3.2209	5.2112	-1.1110	443	1.082	1.351 ^b	1029-1120					
100	-2.9026	4.4894	-0.7767		1.021	1.295	1102 - 1178					
RbCl-PrCl ₃												
0	-2.9964	6.6146	-2.0957	1501	1.689	1.879	999-1203					
12.18	-2.5599	5.3382	-1.6412	526	1.279	1.444	919-1174					
24.94	-2.0810	3.9851	-1.0476	618	0.989	1.152	1034-1173					
37.44	-1.7571	3.3424	-0.8321	787	0.872	1.019	924-1174					
50.03	-2.3422	4.2352	-1.1520	3356	0.876	1.041	763-1174					
62.43	-2.8364	4.8310	-1.2663	1813	0.899	1.099	863-1176					
74.86	-2.7586	4.3159	-0.8284	613	0.919	1.164	946-1140					
87.24	-3.3198	5.2424	-1.1757	220	0.952	1.212	1101 - 1178					
			CsCl-PrCl ₃									
0	-2.3816	5.1480	-1.4544		1.468	1.655	918-1248					
5.040	-2.4227	5.1412	-1.5311	832	1.331	1.501	892-1185					
10.09	-2.4447	5.0100	-1.5317	1155	1.168	1.325	862-1185					
19.94	-1.7034	3.1477	-0.7093	274	0.858	1.013	1065 - 1171					
25.03	-1.9301	3.4760	-0.8814	311	0.785	0.9345	1089 - 1185					
29.52	-2.0232	3.5493	-0.9280	269	0.717	0.8633	1083 - 1166					
46.00	-1.6736	3.0025	-0.7482	2605	0.687	0.8189	822-1181					
59.95	-2.4142	4.1672	-1.1372	2771	0.748	0.9092	875-1191					
73.23	-2.9580	4.8345	-1.2282	1060	0.816	1.023	909-1183					
84.79	-4.6458	7.9122	-2.5932	594	0.859	1.067	1001-1185					

^b Extrapolation

60

Fig. 1. Specific conductivity κ of individual molten PrCl₃.

rides can be a part of the initial praseodymium chloride or may be formed during the experiments as the result of the interaction with atmosphere or constructional materials.

3.2. Binary Mixtures

The electrical conductivity of three binary mixtures, LiCl-PrCl₃, RbCl-PrCl₃, and CsCl-PrCl₃, was studied over the entire composition range with an increment of \sim 10 mol. % each time. These data were approximated by a parabolic function whose coefficients are listed in Table 1. The specific conductivity dependence on the composition at 1173 K is shown in Figure 2 for each system. The NaCl-PrCl₃ and KCl-PrCl₃ systems were investigated in [7], and the corresponding data are also plotted in Figure 2 for comparison.

The electrical conductivity of all five molten mixtures MCl-PrCl₃ (M = Li, Na, K, Rb, Cs) was measured in the dissertation [9]. For the system LiCl-PrCl₃, the average disagreement with our data is about 5.7%, maximum one 13% at 1173 K, see Figure 2.

For RbCl-PrCl₃ and CsCl-PrCl₃ systems, the maximum difference reaches 11.3 and 42% (1173 K), respectively. Furthermore, even the tendency of conductivity is not clear enough when going from the rubidium to the cesium system, see Figure 3. Presumably PrCl₃, used in work [9], contained an appreciable quantity of oxychlorides, various in different samples. Therefore, we excluded work [9] from any further consideration.

As was found in [1] the data of [15] on the conductivity of fused individual NdCl₃ and fused systems NaCl-NdCl₃ and KCl-NdCl₃ are in good agree-

Fig. 2. Specific conductivity κ of molten MCl-PrCl₃ systems.

Fig. 3. Specific conductivity κ of molten RbCl-PrCl₃ and CsCl-PrCl₃ system. Our and [9] data together.

ment with our results on the MCl-NdCl₃ (M = alkaline metals) systems. Close coincidence of the fused PrCl₃ conductivity, received by the authors of the present work and in work of the same group [7], is the evidence of the adequate preparation of anhydrous PrCl₃ and the consequent reliability of other data on the conductivity of the fused NaCl-PrCl₃ and KCl-PrCl₃ systems [7]. Our data together with the data of work [7] seem to form a self-consistent system of data on the conductivity of the molten MCl-PrCl₃ (M = Li, Na, K, Rb, Cs) mixtures. In these systems, the conductivity reduces from LiCl to CsCl. In the systems LiCl-PrCl₃, NaCl-PrCl₃, KCl-PrCl₃ the conductivity smoothly reduces with increase of the NdCl₃ content. In the KCl-PrCl₃ system, conductivity is actually constant in the concentration range 40-100 mol. % PrCl₃. In the RbCl-PrCl₃ and CsCl-NdCl₃ mixtures, the conductivity reduces up to 30-30 mol. % PrCl₃, and then a wide minimum is observed around 40 mol. % PrCl₃.

Table 2. Molar conductance Λ [S cm²/mol] and their activation energy E_A of molten MCl-PrCl₃ mixtures (M = Li, Rb, Cs); (R = 8.31441 kJ/(mol K)).

PrCl ₃	$\ln \Lambda$	$=L_0+L_1/(RT)+$	$L_2/(RT)^2$	Л (1073 К)	<i>E</i> _A (1073 K)	Л (1173 К)	<i>E</i> _A (1173 K)					
[mol.%]	L_0	$L_1 \cdot 10^{-3}$	$L_2 \cdot 10^{-6}$	$[S cm^2/mol]$	[kJ/mol]	[S cm ² /mol]	[kJ/mol]					
LiCl-PrCl ₃												
0*	6.45195	-12.0236	14.4424	197.5	8.76	215.0	9.02					
4.985	5.46690	2.25060	-41.1992	181.6	6.99	193.4	6.20					
10.01	5.81467	-3.05019	-24.0327	176.1	8.44	190.4	7.98					
19.90	5.31909	3.26878	-55.4289	146.8	9.16	159.4	8.10					
25.04	5.04957	8.33270	-81.3144	142.9	9.90	155.9	8.34					
31.03	5.11678	7.48328	-83.7585	134.7	11.3	148.9	9.69					
39.70	5.86354	-2.66683	-54.8788	131.0	15.0	150.4	13.9					
49.82	5.29778	7.02643	-106.346	115.5	16.8	134.3	14.8					
59.81	5.23024	8.91392	-124.440	106.3	19.0	126.0	16.6					
69.76	5.03688	12.8737	-155.138	92.8	21.9	112.8	18.9					
79.94	5.34207	8.75812	-151.120	83.5	25.1	104.7	22.2					
89.76	5.33826	9.48041	-164.198	76.5	27.3	97.91	24.2					
100	5.944	0.188345	-129.172	76.9	28.8	100.0	26.3					
RbCl -PrCl ₃												
0*	5.85914	-7.59403	-37.0366	93.93	15.9	110.0	15.2					
12.18	5.54184	-4.49935	-56.2763	75.99	17.1	89.02	16.0					
24.94	5.73139	-8.60791	-50.9531	61.95	20.0	74.67	19.1					
37.44	5.53275	-6.45299	-61.1463	56.89	20.2	68.60	19.0					
50.03	3.37836	33.3337	-240.798	59.70	21.9	71.14	19.7					
62.43	3.93850	28.8449	-241.294	62.81	25.2	78.20	20.6					
74.86	4.65843	20.6981	-222.284	65.74	29.1	85.09	24.9					
87.24	5.45827	7.94503	-167.310	69.87	29.6	91.28	26.4					
				CsCl-PrCl ₃								
0^*	6.20341	-12.4750	-20.7611	94.09	17.1	110.6	16.7					
5.040	5.85383	-7.62790	-42.0784	87.37	17.1	102.4	16.3					
10.09	5.47817	-2.29873	-68.5342	78.21	17.7	92.01	16.4					
19.94	6.06119	-13.9351	-33.3336	59.17	21.4	72.38	20.8					
25.03	5.68138	-7.50466	-66.5476	54.82	22.4	67.51	21.2					
29.52	5.35637	-1.75340	-98.4994	50.51	23.8	62.87	22.0					
46.00	4.45659	12.2592	-153.102	49.75	22.3	60.58	19.8					
59.95	3.95598	25.8097	-226.354	54.87	24.9	68.21	20.6					
73.23	3.63972	36.9494	-292.914	60.41	28.7	77.39	23.1					
84.79	2.9088	51.2475	-357.801	63.92	29.0	81.59	22.1					

3.3. Molar Conductivity

The molar conductivity Λ of a molten salt is related to the specific electrical conductivity κ by the equation

$$\Lambda = \kappa V_{\rm m} = \kappa M/d\,,\tag{1}$$

where $V_{\rm m}$ is the molar volume of the salt, M the molar mass, and d the density. The same equation is applied to the mixtures.

The literature data on the density of the molten MCl-LnCl₃ mixtures do not correlate well to each other. The data on the densities of the LiCl-PrCl₃, RbCl-PrCl₃, and CsCl-PrCl₃ melts are absent with the only exception of data [9] that we consider to be doubtful. The procedure suggested in works [16, 17] was used to calculate the densities of these systems. In these works, empirical equations for computing molar volumes of such binary mixtures based on known molar volumes of end-members of mixtures were proposed. The equations were developed based on the analysis of all available excess volume data on these melts.

For calculations, the densities of LiCl, RbC,l and CsCl were adopted from [18] and for the density of molten PrCl₃ the following relation was used [19]:

$$d = 4.123 - 7.86 \cdot 10^{-4} T$$
, [g/cm³]. (2)

In a large number of publications, authors assume that the $\ln(\Lambda)$ (or $\ln(\lambda)$) vs. 1/T plot is a straight line (λ is the equivalent conductivity) [7, 9, 13, 20–23].

Fig. 4. The dependence $ln(\Lambda)$ vs. 1/RT for molten LiCl-PrCl₃ systems. Some coalesced curves are not shown.

However, if the data are smooth enough its nonlinearity is revealed in all cases. These lines are convex upwards even though they seem by eye to be straight, see Figures 4 – 6. For instance, for the system RbCl-50.04 mol. %PrCl₃, studied in the widest temperature range ($\Delta T = 411$ K), the activation energy E_A was lowered from 42.3 (763 K) to 19.7 kJ/mol (1174 K). For the LiCl-79.94 mol. % PrCl₃ system studied in the narrowest temperature range ($\Delta T = 82$ K) the activation energy E_A was lowered from 27.0 (1029 K) to 24.3 kJ/mol (1111 K).

These deviations are small for the individual salts and increase when transferred to the binary mixtures and with temperature decreasing.

For binary mixtures, the results Λ vs. [PrCl₃] at 1173 K are depicted in Figure 7. The molar conductivity shows a similar trend with the composition as the specific conductivity. However, the minimum at

Fig. 5. The dependence $ln(\Lambda)$ vs. 1/RT for molten RbCl-PrCl₃ systems. Some coalesced curves are not shown.

~40% PrCl₃ in the KCl-PrCl₃, RbCl-PrCl₃, and CsCl-PrCl₃ systems is observed more clearly in this plot. All these curves have essential deviations from additive behaviour. In Figure 8, the relative deviations from additivity of the molar conductivity [$\delta = ((\Lambda_{addit} - \Lambda)/\Lambda_{addit}) \cdot 100\%$] are shown. The maximum deviation in the LiCl-PrCl₃ system is about 18%, whereas in the RbCl-PrCl₃ and CsCl-PrCl₃ systems, it reaches 35 and 43%, respectively. The maximum deviations occur in the range 35–45 mol. % PrCl₃, except for the LiCl-PrCl₃ system. Its maximum deviations lays around 50 mol. % PrCl₃.

Such strong deviations from additivity are clearly indicative of complex formation in the melts. We found only one work, where precisely the structure of molten PrCl₃ was studied. In this work [24], the structures of LaCl₃, CeCl₃, PrCl₃, NdCl₃, GdCl₃, DyCl₃, and

Fig. 6. The dependence $ln(\Lambda)$ vs. 1/RT for molten CsCl-PrCl₃ systems. Some coalesced curves are not shown.

Fig. 7. Molar conductance Λ of molten MCl-PrCl₃ systems. SmCl₃ melts were studied by X-ray diffraction analysis. It was inferred that in all cases the Ln³⁺ cation was surrounded by six Cl⁻ ions with the local octahedral symmetry. By the virtue of the fact that the Nd³⁺ ion is the closest Pr³⁺ analogue, the conclu-

Fig. 8. Molar conductivity deviations from additivity in molten MCl- $PrCl_3$ systems.

sion on the structure of the MCI-NdCl₃ melts are equally usable for the MCI-PrCl₃ melts. These references have been done before [1]. It will be relevant to repeat only one of the conclusions from work [25], that the six-fold coordination around the rare earth cation in the MCI-LnCl₃ melts is preserved at all mole fractions. Two basic facts including the fast decreasing of conductivity at PrCl₃ addition and the location of the maxima of the relative deviations in the range 33-40 mol. % PrCl₃ show agreement with this concept of the melt structure. For further information please refer to [1].

The maximal relative deviations in the LiCl-PrCl₃ system were clearly shifted to the range 50 mol. % PrCl₃. This is not an experimental error, but the result of the Pr³⁺ and Li⁺ ions interference. The lithium ion potential (charge-to-radius ratio) is the closest to the praseodymium ion potential among the alkali metals $((\phi(Pr^{3+}) = 3/0.997 \approx 3.01; \phi(Li^+) = 1/0.59 \approx 1.69; \phi(Na^+) = 1/0.59 \approx 1.01; \phi(K^+) \approx 0.73; \phi(Rb^+) \approx 0.66; \phi(Cs^+) \approx 0.60).$

The Li⁺ ion is quite a strong complexing agent in itself. It forms the LiCl₄³⁻ complexes, and hence is competitive with the Pr^{3+} ion. Consequently, the praseodinium complexes have the smallest strength and the largest distortions. It resulted in the smallest deviations of the conductivity from the additivity and in the shift of the deviations maxima to 50 mol. % PrCl₃.

4. Conclusion

The conductivity of molten LiCl-NdCl₃, RbCl-PrCl₃, and CsCl-PrCl₃ was measured. Together with

data [7] on conductivity of NaCl-PrCl₃ and KCl-PrCl₃ molten mixtures, our new facts form a full and self-consistent data system on the electrical conductivity of MCl-PrCl₃ molten systems.

The $\ln \Lambda$ vs. 1/T dependence was found not to be a straight line. The deviations from the linearity were found to be larger in the mixtures than in the individual salts. In all cases, the activation energy reduces with temperature increase.

- A. M. Potapov, L. Rycerz, and M. Gaune-Escard, Z. Naturforsch. 62a, 421 (2007).
- [2] A. Voigt and W. Biltz, Z. Anorg. Allg. Chem. 133, 277 (1924).
- [3] A. S. Dworkin, H. R. Bronstein, and M. A. Bredig, J. Phys. Chem. 66, 1201 (1962).
- [4] Von R. Förthmann and A. Schneider, Z. Anorg. Allg. Chem. 367, 27 (1969).
- [5] K. Cho and T. Kuroda, Denki Kagaku 40, 837 (1972).
- [6] A. V. Kovalevskiy, I. F. Nichkov, and V. I. Shishalov, Izv. VUZov. Zvet. Metallurgiya (Universities transactions. Nonferrous metallurgy) 4, 70 (1983). (in Russian).
- [7] Y. Iwadate, K. Igarashi, and J. Mochinaga, J. Electrochem. Soc. 133, 1162 (1986).
- [8] N. M. Kulagin, D. M. Laptev, N. G. Kulagina, T. V. Kiseleva, and A. I. Poshevneva, IX. All-Union Conference on Physical Chemistry and Electrochemistry of Ionic Melts and Solid Electrolytes, Sverdlovsk, October 20–22, 1987, Abstracts Vol. 1, pp. 79–80 (in Russian).
- [9] T. A. Pobirchenko, PhD thesis. Ekaterinburg, 1988 (In Russian).
- [10] A. V. Kovalevskiy, Rasplavy (Melts), 120 (1988) (In Russian).
- [11] D. M. Laptev, T. V. Kiseleva, V. F. Goryushkin, N. M. Kulagin, and N. G. Kulagina, Zhyrn. Fiz. Khim. (Russian J. Phus. Chem) 34, 48 (1989).
- [12] P. Gaune, M. Gaune-Escard, L. Rycerz, and A. Bogacz, J. Alloys Comp. 235, 143 (1996).
- [13] E. V. Samylina, PhD thesis. Kovrov, 1999 (In Russian).

The results conform to the literature data on the structure of the investigated melts. Six Cl^- ions are the nearest neighbour ions of each Pr^{3+} ion over the entire concentration range.

Acknowledgement

AMP and LR wish to thank the École Polytechnique Universitaire de Marseille for hospitality and support during this work.

- [14] M. Gaune-Escard, A. Bogacz, L. Rycerz, and W. Szczepaniak, Thermochim. Acta 236, 67 (1994).
- [15] J. Mochinaga, Y. Iwadate, and K. Igarashi, J. Electrochem. Soc. 138, 3588 (1991).
- [16] A. Potapov, Rasplavy (Melts), 25 (2001) (In Russian).
- [17] A. Potapov and Y. Sato, in: Proceedings of the 6th International Symp. on Molten Salts Chemistry and Technology, Shanghai, China, October 8–13, 2001, pp. 122–125.
- [18] G. J. Janz, J. Phys. Chem. Ref. Data 17, Suppl. 2, (1988).
- [19] A. Potapov, Rasplavy (Melts), 15 (2005) (In Russian).
- [20] J. Mochinaga, Y. Iwadate, and K. Igarashi, J. Electrochem. Soc. 138, 3588 (1991).
- [21] G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, Molten Salts, Vol. 1, Electrical Conductance, Density, and Viscosity Data, NSRDS-NBS15, U.S. Dept. Comm., Washington 1968.
- [22] K. Grjotheim, R. Nikolic, and H. A. Øye, Acta Chem. Scand. 24, 489 (1970).
- [23] M. V. Smirnov and V. A. Khokhlov, Zhurn. prikl. khim. (Russian J. Appl. Chem) 43, 302 (1970).
- [24] J. Mochinaga, Y. Iwadate, and K. Fukushima, Mater. Sci. Forum **73**-**75**, 147 (1991).
- [25] G. N. Papatheodorou, The structure of molten rare earth chlorides. In: Progress in Molten Salt Chemistry 1, 65 (2000). Proc. EUCHEM 2000 conf. on molten salts. Karrebaeksminde, Denmark, Aug. 20–25, 2000. Special volume in honour of the 60th birthday of Prof. N. J. Bjerrum.