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In this paper, three different analytical methods have been successfully used to study a nonlinear
oscillator equation arising in the microbeam-based electromechanical resonator. These methods are:
variational approach, Hamiltonian approach, and amplitude-frequency formulation. The governing
equation is based on the Euler–Bernoulli hypothesis and the partial differential equation (PDE) is
simplified into an ordinary differential equartion (ODE) by using the Galerkin method. A frequency
analysis is carried out, and the relationship between the angular frequency and the initial amplitude
is obtained in closed analytical form. A comparison of the present solutions is made with the existing
solutions and excellent agreement is noted.
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1. Introduction

Microelectromechanical systems (MEMS) are
a technology that combines computers with tiny
mechanical devices such as sensors, valves, gears,
mirrors, and actuators embedded in semiconductor
chips. These systems can sense, control, and activate
mechanical processes on the micro scale, and function
individually or in arrays to generate effects on the
macro scale. Microelectromechanical systems are
small integrated devices or systems that combine
electrical and mechanical components. They range in
size from the sub-micrometer (or sub-micron) level
to the millimeter level and there can be any number,
from a few to millions, in a particular system. MEMS
extend the fabrication techniques developed for the
integrated circuit industry to add mechanical elements
such as beams, gears, diaphragms, and springs to
devices [1 – 3]. Examples of MEMS device applica-
tions include inkjet-printer cartridges, accelerometers,
miniature robots, microengines, locks, inertial sensors,
microtransmissions, micromirrors, micro actuators,
optical scanners, fluid pumps, transducers, and chem-
ical, pressure and flow sensors. New applications are

emerging as the existing technology is applied to
the miniaturization and integration of conventional
devices [4]. However, electrostatic actuation, large
deflections and damping caused by different sources
give rise to nonlinear behaviour. Nonlinearity in
MEMS may cause some difficulties in computations.
Although it is difficult to get analytic approxima-
tions for different phenomena in MEMS, there are
some analytic techniques for nonlinear problems of
MEMS [5]. The perturbation methods [6 – 8] are in
common use. Perturbation methods are based on the
existence of small parameters, the so-called perturba-
tion quantity. Many nonlinear problems do not contain
such perturbation quantity, so to overcome the short-
comings, many new techniques have appeared in open
literature such as: variational iteration method [9 – 13],
energy balance method [14 – 19], Hamiltonian ap-
proach [20 – 23], coupled homotopy-variational
formulation [24, 25], variational approach [26 – 28],
amplitude-frequency formulation [29, 30], and other
classical methods [31 – 45].

In this paper, the basic idea of variational approach,
Hamiltonian approach and amplitude-frequency for-
mulation are introduced and then their applications are
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studied for the model of nonlinear oscillations in the
Micro-electromechanical systems [5].

2. Formulation of the Problem

The equation of motion whose sketch is shown in
Figure 1 that governs the transverse deflection w(x, t)
with driving force per unit length, resulting from elec-
trostatic excitation is written as [5]

ĒI
∂ 4w
∂x4 +ρS

∂ 2w
∂ t2 =

[
N̄ +

ES
2l

∫ l

0

(
∂w
∂x

)2]
∂ 2w
∂x2

(1)

+
εν bν2

2

[
1

(g0−w)2 −
1

(g0 +w)2

]
,

and the relevant boundary conditions [5] are

x = 0, l : w =
∂w
∂x

= 0 , (2)

where Ē is the effective modulus, l the length, h the
width band thickness, and ES = bh the area of the
cross-section with I = bh3/12 the moment of inertia
of the cross-section. Further, N̄ is the tensile or com-
pressive axial load, ν the Poisson ratio, g0 the initial
gap, and εν the dielectric constant of the gap medium.

Upon making use of the following substitutions [5]

ξ =
x
l
, W =

w
g0

, τ =

√
ĒI

ρbhl4 t , α = 6

(
g0

h

)2

,

N =
N̄l2

ĒI
, V 2 =

24εν l4ν2

Ēh3g3
0

,

(3)

Fig. 1 (colour online). Schematics of a double-sided driven
clamped-clamped microbeam-based electromechanical res-
onator.

the resulting nonlinear partial differential equation is
of the form [5]

∂ 4W
∂ξ 4 +

∂ 2W
∂τ2 =

[
N +α

∫ 1

0

(
∂W
∂ξ

)2]
∂ 2W
∂ξ 2

+
V 2

4

[
1

(1−W 2)
− 1

(1+W 2)

]
,

(4)

and the boundary conditions (2) become [5]

ξ = 0,1 : W =
∂W
∂ξ

= 0 . (5)

The deflection W (ξ ,τ) in (4) is expressed as a sum of
spatial shapes that, a priori, satisfy the imposed bound-
ary conditions [5]

W (ξ ,τ) =
n

∑
i=1

φi(ξ )ui(τ) , (6)

where n is the number of degrees of freedom and φi(ξ )
the ith eigenfunction of the beam. Based on a sin-
gle degree-offreedom model of the beams (n = 1), (4)
can be solved with appropriate accuracy [46]. Hence,
the solution is constructed by expressing the deflection
function W (ξ ,τ) as the product of two separate func-
tions:

W (ξ ,τ) = φ(ξ )u(τ) . (7)

As earlier work suggested, here the trial function is
φ(ξ ) = 16ξ 2(1− ξ )2 [47]. Obviously, (7) satisfies all
the boundary conditions listed in (5). In order to avoid
division by zero in the electrostatic force term, we mul-
tiply (4) by (1−W 2)2.

Substituting (7) into the resulting equation, multi-
plying by φ(ξ ), and integrating the outcome from 0
to 1, we obtain [5]

ü
(
a1u4 +a2u2 +a3

)
+a4u+a5u3 +a6u5 +a7u7 = 0 ,

(8)

where

a1 =
∫ 1

0
φ
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0
φ
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φ
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φ
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(
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′′
φ (9)
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·
∫ 1

0
(φ ′)2 dξ

)
dξ ,

a6 =
∫ 1

0

(
φ
′′′′

φ
5−Nφ

′′
φ

5 +2αφ
′′
φ

3
∫ 1

0
(φ ′)2 dξ

)
dξ ,

a7 =−
∫ 1

0

(
αφ
′′
φ

5
∫ 1

0
(φ ′)2 dξ

)
dξ .

Here an overdot denotes differentiation with respect to
the time variable τ , while a prime indicates the par-
tial differentiation with respect to the coordinate vari-
able ξ .

3. The Application of the Variational Approach
(VA)

The variational approach for nonlinear oscillators
was proposed in 2007 [26]. Consider the nonlinear os-
cillator (8). Its variational principle can be obtained by
using the semi-inverse method [26]:

J(u) =
∫ T

4

0

(
− 1

2
u̇2(a1u4 +a2u2 +a3

)
+

a4

2
u2

+
a5

4
u4 +

a6

6
u6 +

a7

8
u8
)

dt, T =
2π

ω
,

(10)

where T is period of the oscillator. Assume that its ap-
proximate solution can be expressed as

u(t) = Acos(ωt) . (11)

In (11), ω is the frequency to be determined and A is
the amplitude of oscillation. Inserting (11) into (10)
yields

J =
A2π

ω

(
5

192
a6A4 +

35
2048

a7A6 +
3

64
a5A2

− 1
8

a3ω
2− 1

64
a1ω

2A4 +
1
8

a4−
1

32
a2ω

2A2
)

.

(12)

Using the Ritz method, it is required

∂J
∂ω

= 0 ,
∂J
∂A

= 0 . (13)

In [26], J. H. He gave a very lucid as well as elemen-
tary discussion of the invalidity of the Ritz method.
In particular, He used an unheard-of simple procedure
to arrive at a surprisingly accurate prediction for the
relationship between the frequency and amplitude of

a nonlinear oscillator. According to [26], to identify ω

one requires

∂J
∂A

= 0 , (14)

from which the relationship between the amplitude and
frequency of the oscillator can be easily obtained:

ωVA =
√

2
4

√(
40a6A4 +35a7A6 +48a5A2 +64a4

)
3a1A4 +4a2A2 +8a3

.
(15)

4. The Application of the Hamiltonian Approach
(HA)

Previously, He [18] had introduced the energy bal-
ance method based on collocation and Hamiltonian.
Recently, in 2010 it was developed to the Hamilto-
nian approach [20]. This approach is a kind of energy
method with a vast application in conservative oscil-
latory systems. In order to clarify this approach, the
Hamiltonian of (8) can be written in the form

H(u) =
1
2

u̇2(a1u4 +a2u2 +a3
)
+

a4

2
u2

+
a5

4
u4 +

a6

6
u6 +

a7

8
u8 .

(16)

Equation (16) implies that the total energy keeps un-
changed during the oscillation. According to (16), it is

∂H
∂A

= 0 . (17)

Introducing a new function, H(u), defined as [16]

H(u) =
∫ T

4

0

(
1
2

u̇2(a1u4 +a2u2 +a3
)
+

a4

2
u2

+
a5

4
u4 +

a6

6
u6 +

a7

8
u8
)

dt =
1
4

T H ,

(18)

it is obvious that

∂H
∂T

=
1
4

H . (19)

Equation (19) is equivalent to the following one:

∂

∂A

(
∂H
∂T

)
= 0 (20)
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or
∂

∂A

(
∂H

∂ (1/ω)

)
=

35
256

a7πA7

+
(

5
32

a6−
3
32

ω
2a1

)
πA5

+
(

3
16

a5−
1
8

ω
2a2

)
πA3 +

(
1
4

a4−
1
4

ω
2a3

)
πA = 0 .

(21)

Consequently, the approximate frequency can be found
from (21):

ωHA =
√

2
4

√(
40a6A4 +35a7A6 +48a5A2 +64a4

)
3a1A4 +4a2A2 +8a3

.
(22)

5. The Application of the Amplitude–Frequency
Formulation (AFF)

To solve nonlinear problems, an amplitude–
frequency formulation for nonlinear oscillators was
proposed by He, which was deduced using an an-
cient Chinese mathematics method [32, 33]. Accord-
ing to He’s amplitude-frequency formulation, u1 =
Acos t and u2 = Acosωt serve as the trial functions.
Substituting u1 and u2 into (3) results in the following
residuals:
R1 = a7A7 cos7 t +

(
−a1A5 +a6A5)cos5 t

+
(
−a2A3 +a5A3)cos3 t +(−Aa3 +a4A)cos t

(23)

and

R2 = a7A7 cos7(ωt)+(−a1ω
2A5 +a6A5)cos5(ωt)

+(−a2ω
2A3 +a5A3)cos3(ωt)

(−Aω
2a3 +a4A)cos(ωt) .

(24)

According to the amplitude–frequency formulation,
the above residuals can be rewritten in the forms of
weighted residuals:

R11 =
4
T1

∫ T1
4

0
R1 cos(t)dt, T1 = 2π , (25)

and

R22 =
4
T2

∫ T2
4

0
R2 cos(ωt)dt, T2 =

2π

ω
. (26)

Applying He’s frequency-amplitude formulation

ω
2 =

ω2
1 R22−ω2

2 R11

R22−R11
, (27)

where

ω1 = 1 , ω2 = ω . (28)

Then the approximate frequency can be obtained:

ωAFF =
√

2
4

√(
40a6A4 +35a7A6 +48a5A2 +64a4

)
5a1A4 +6a2A2 +8a3

.
(29)

6. Results and Discussion

In this section, the applicability, accuracy, and effec-
tiveness of the proposed approaches are illustrated by
comparing the analytical approximate frequency and

Fig. 2. Comparison between Hamiltonion approach (HA),
amplitude–frequency formulation (AFF), energy balance
method (EBM), and the fourth-order Runge–Kutta method
(R-K); A = 0.25.

Fig. 3. Comparison between Hamiltonion approach (HA),
amplitude–frequency formulation (AFF), energy balance
method (EBM), and the fourth-order Runge–Kutta method
(R-K); A = 0.35.
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periodic solution with the energy balance method [5]
and fourth-order Runge–Kutta method. Fu et al. ob-
tained a solution for this problem by energy balance
method [5]:

ωEBM =
√

6
12

√(
56a6A4 +45a7A6 +72a5A2 +96a4

)
a1A4 +2a2A2 +4a3

.
(30)

It is found that the obtained results for vari-
tional approach and Hamiltonion approach are simi-
lar. The comparison between Hamiltonion approach,
amplitude–frequency formulation, energy balance
method, and fourth-order Runge–Kutta method is plot-
ted in Figures 2 and 3. Herein the values of parameters
are taken as N = 10 and α = 25.

7. Conclusions

In this paper, three powerful and simple methods are
applied for solving the equation of motion of a double-
sided driven clamped-clamped microbeam-based elec-
tromechanical resonator. The proposed techniques
are employed without any linearization, discretiza-
tion or restrictive assumptions. The nonlinear oscillator
ODE is applicable in microelectromechanical systems.
These new approaches prove to be very rapid, effec-
tive, and accurate, and this is proved by comparing the
solutions obtained through the proposed methods with
the published results in the literature. This paper shows
one step in the attempt to develop the nonlinear analyt-
ical techniques valid for PDE/ODE problems arising in
the microelectromechanical systems, and the proposed
procedure can easily be used to find analytical approx-
imate solutions to other strongly nonlinear oscillators.
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