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In this paper, we present a reliable modification of the Adomian decomposition method for solving
higher-order singular boundary value problems. He’s polynomials are also used to overcome the com-
plex and difficult calculation of Adomian polynomials occurring in the application of the Adomian
decomposition method. Numerical examples are given to illustrate the accuracy and efficiency of the
presented method, revealing its reliability and applicability in handling the problems with singular
nature.
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1. Introduction

The Adomian decomposition method (ADM) is one
of the powerful and reliable methods for solving vari-
ous kinds of problems arising in applied sciences, lin-
ear and nonlinear as well. This method, which accu-
rately computes the series solution, is of great inter-
est to applied sciences [1, 2]. The method provides the
solution in a rapidly convergent series solution, if the
equation has a unique solution, and it has been suc-
cessfully applied to a wide class of problems aris-
ing in applied sciences, see [1 – 6], and the references
therein. The convergence of the decomposition series
have been investigated by several authors [7 – 9]. In re-
cent years, the Adomian method has been modified so
as to solve boundary value problems with singular na-
ture by several authors [10 – 13]. The difficulty of those
singular problems is due to the singularity behaviour
that occurs at the point x = 0.

In this paper we introduce a new reliable mod-
ification of the ADM to overcome the singularity
difficulty for higher-order boundary value problems.
He’s polynomials with the homotopy perturbation
method (HPM) are also used to overcome the complex
and difficult calculation of Adomian polynomials
occurring in the application of the Adomian decom-
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position method, demonstrating that He’s polynomials
can completely replace Adomian’s polynomials. The
HPM, first proposed by He in 1998, was developed
and improved by He in [14 – 16]. This method is a
novel and effective method [17 – 19], and has been
successfully applied to solve many types of prob-
lems. For a comprehensive survey on the method,
new interpretation, and its applications, the reader
is referred to [17, 18]. Several numerical examples
will be considered to illustrate that the proposed
framework is well suited to attain an accurate solution
to the higher-order singular boundary value problems,
revealing its reliability and applicability.

2. Modified Adomian Decomposition Method

Consider the singular boundary value problem of
(n+1)-order ordinary differential equation in the form

y(n+1) +
m
x

y(n) +Ny = g(x), (1)

y(0) = a0,y′(0) = a1, . . . ,y(r−1)(0)

= ar−1,y(b) = c0,y′(b) = c1, . . . ,

y(n−r)(b) = cn−r,

(2)
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where N is a nonlinear differential operator of order
less than n, g(x) is a given function, a0,a1, . . . ,ar−1,
c0,c1, . . . ,cn−r,b are given constants, where m ≤ r ≤
n,r ≥ 1.

We first rewrite (1) in the form

x−2 dn−1

dxn−1

[
x2y′′+(m− 2n+ 2)xy′

+(n−m)(n− 1)y
]
+Ny = g(x),

(3)

or equivalently,

x−2 dn−1

dxn−1

[
x2n−m d

dx

(
xm−2n+2 dy

dx

)]

+(n−m)(n− 1)x−2 dn−1y
dxn−1 +Ny = g(x).

(4)

Equation (4) can be written in the operator form

L2L1y = g(x)+ (m− n)(n− 1)L2y−Ny, (5)

where the differential operator L employs the first two
derivatives

L1 = x2n−m d
dx

(
xm−2n+2 d

dx

)
, (6)

L2 = x−2 dn−1

dxn−1 (7)

in order to overcome the singularity behaviour at x= 0.
In view of (6) and (7), the inverse operators L−1

1 and
L−1

2 are the integral operators defined by

L−1
1 (.) =

∫ x

b
x2n−m−2

∫ x

0
xm−2n(.)dxdx, (8)

L−1
2 (.) =

∫ x

0
· · ·
∫ x

0︸ ︷︷ ︸
n−1 times

x2(.)dx · · ·dx. (9)

By applying L−1
2 on (5), we have

L1y =Ψ1(x)+L−1
2 g(x)−L−1

2 Ny, (10)

such that

L2Ψ1(x) = 0. (11)

By applying L−1
1 on (10), we have

y(x) =Ψ2(x)+L−1
1 Ψ1(x)+L−1

1 L−1
2 g(x)

− L−1
1 L−1

2 Ny,
(12)

such that

L1Ψ2(x) = 0. (13)

The Adomian decomposition method introduces the
solution y(x) and the nonlinear function Ny by infinite
series

y(x) =
∞

∑
n=0

yn(x) (14)

and

Ny =
∞

∑
n=0

An(y0,y1, . . . ,yn), (15)

where the Adomian polynomials An are defined as

An =

[
1
n!

dn

dλ n N

(
n

∑
i=0

yi(λ )i

)]
λ=0

. (16)

The components yn(x) of the solution y(x) will
be determined recurrently, and Adomian polynomials
can be constructed for various classes of nonlinear-
ity according to specific algorithms presented in [6]
and [20].

Substituting (14) and (15) into (12) gives

∞

∑
n=0

yn =Ψ2(x)+L−1
1 Ψ1(x)+L−1

1 L−1
2 g(x)

−L−1
1 L−1

2

∞

∑
n=0

An.
(17)

Identifying y0 =Ψ2(x)+L−1
1 Ψ1(x)+L−1

1 L−1
2 g(x), the

Adomian method admits the use of the recursive rela-
tion

y0 =Ψ2(x)+L−1
1 Ψ1(x)+L−1

1 L−1
2 g(x),

yn+1 =−L−1An, n ≥ 0,
(18)

which gives

y0 =Ψ(x)+L−1g(x),

y1 =−L−1A0,

y2 =−L−1A1,

y3 =−L−1A2,
...

(19)

This will lead to the complete determination of the
components yn(x) of y(x). The series solution of y(x)
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defined by (14) follows immediately. For numerical
purposes, the n-term approximant

Ψn =
n−1

∑
k=0

yk (20)

can be used to approximate the exact solution.

3. Numerical Examples

Example 1. Consider the nonlinear boundary value
problem

y′′ − 1
x

y′ =
x2

3
y5, (21)

y(0) = 1, y′(1) =−
√

3
8

. (22)

We define

L1 = x3 d
dx

(
x−1 d

dx

)
, (23)

so that

L−1
1 (.) =

∫ x

0
x
∫ x

1
x−3(.)dxdx. (24)

After multiplying (21) by x2, in an operator form, it
becomes

L1y =
x4

3
y5. (25)

Applying L−1
1 on both sides of (25) we find

y(x) = y(0)+
1
2

y′(1)x2 +L−1
1

x4

3
y5. (26)

Using the decomposition series for the linear function
y(x) and the polynomial series for the nonlinear term
y5, we obtain

∞

∑
n=0

yn = y(0)+
1
2

y′(1)x2 +L−1
1

(
x4

3

∞

∑
n=0

An

)
. (27)

This gives the recursive relationship

y0(x) = y(0)+
1
2

y′(1)x2, (28)

yk+1(x) = L−1
1

(
x4

3
Ak

)
, k ≥ 0. (29)

The Adomian polynomials for the nonlinear term y5

are computed as follows:

A0 = y5
0,

A1 = 5y4
0y1,

A2 = 5y2y4
0 + 10y3

0y2
1,

A3 = 5y3y4
0 + 20y2y1y3

0 + 10y3
1y2

0,
...

(30)

Substituting (30) into (29) gives the components

y0 = 1− 0.108253x2,

y1 =−0.0637827x2+ 0.0416666x4

− 0.0075176x6+ 0.00081380x8

− 0.00005286x10+ 1.9073486 ·10−6x12

− 2.9496649 ·10−8x14 + · · · ,
y2 = 0.0062577x2− 0.0044294x6

+ 0.0024057x8− 0.0006259x10

+ 0.0001017x12− 0.0000114x14+ · · · ,
y3 =−0.0010668x2+ 0.0004346x6

+ 0.0001884x8− 0.0003596x10

+ 0.0001864x12− 0.0000553x14+ · · · ,
...

(31)

The solution in a series form is thus approximately
given by

y = y0 + y1 + y2 + y3

= 1− 0.1668450x2+ 0.0416667x4

− 0.0115124x6+ 0.0034079x8

− 0.0010384x10+ 0.0002900x12

− 0.0000668x14+ · · · ,

(32)

which is in good agreement with the Taylor series of
the exact solution y(x) = 1√

1+ x2
3

given by

y(x) = 1− 0.166667x2+ 0.0416667x4

− 0.0115741x6+ 0.00337577x8

− 0.0010123x10+ 0.0003094x12

− 0.0000958x14+ · · · .

(33)

For the above and later computations, the Maple pack-
age was used and the digits environment variable was
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set to 20 as the number of digits that Maple uses when
calculating with software floating-point numbers. The
results rounded off to seven decimal places are pre-
sented for the sake of simplicity.

Example 2. Consider the nonlinear boundary value
problem

y′′+
ρ
x

y′ = g(x), (34)

y(0) = 0, y′(b) = b−ρ(1−ρ)cosb−b1−ρ sinb, (35)

where

g(x) =−x1−ρ cosx− (2−ρ)x−ρ sinx. (36)

We define

L1 = x2−ρ d
dx

(
xρ d

dx

)
, (37)

L2 = x−2, (38)

so that

L−1
1 (.) =

∫ x

0
x−ρ

∫ x

b
xρ−2(.)dxdx, (39)

L−1
2 (.) = x2(.). (40)

In an operator form, (34) becomes

L2L1y = g(x). (41)

We find that

L−1
1 L1y =

∫ x

0
x−ρ

∫ x

b
xρ−2

[
x2−ρ d

dx

(
xρ dy

dx

)]
dxdx

=
∫ x

0
x−ρ [xρ y′ − bρy′(b)

]
dx

= y(x)− y(0)− bρ

1−ρ
y′(b)x1−ρ .

(42)

Applying L−1
2 ,L−1

1 on both sides of (41), we find after
imposing the given boundary conditions

y(x) = y(0)+
bρ

1−ρ
y′(b)x1−ρ

+
∫ x

0
x−ρ

∫ x

b
[−xcosx− (2−ρ)sinx]dxdx =

1
1−ρ

[(1−ρ)cosb− bsinb]x1−ρ

+ [cosx− cosb]x1−ρ +
bsinb
1−ρ

x1−ρ = x1−ρ cosx,

(43)

which is the exact solution of the problem (34) and
(35).

Example 3. Consider the nonlinear boundary value
problem

y′′′+
3
x

y′′ − y3 = g(x), (44)

y(0) = 0, y′(0) = 0, y(1) = e, (45)

where g(x) = 24ex+36xex+12x2ex+x3ex−x9e3x. We
use the Taylor series of g(x) with order 10,

g(x)≈ gT = 24+ 60x+ 60x2+ 35x3+ 14x4 +
21
5

x5

+ x6 +
11
56

x7 +
11

336
x8 − 30097

30240
x9 − 64787

21600
x10. (46)

We define

L1 = x
d
dx

(
x

d
dx

)
, (47)

L2 = x−2 d
dx

, (48)

so that

L−1
1 (.) =

∫ x

0
x−1

∫ x

0
x−1(.)dxdx. (49)

L−1
2 (.) =

∫ x

0
x2(.)dx. (50)

In an operator form, (44) becomes

L2L1y = gT (x)+L2y+ y3. (51)

Applying L−1
2 ,L−1

1 on both sides of (51) and then in-
corporating the given boundary conditions, we find

y(x) = L−1
1 L−1

2 gT (x)+L−1
1 y+L−1

1 L−1
2 y3. (52)

Using the decomposition series for the linear function
y(x) and the polynomial series for the nonlinear term
y3, we obtain

∞

∑
n=0

yn = L−1
1 L−1

2 gT (x)+L−1
1

( ∞

∑
n=0

yn

)
+L−1

1 L−1
2

( ∞

∑
n=0

An

)
.

(53)

This gives the recursive relationship

y0(x) = L−1
1 L−1

2 gT (x), (54)

yk+1(x) = L−1
1 yk +L−1

1 L−1
2 Ak, k ≥ 0. (55)
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The Adomian polynomials for the nonlinear term y3

are computed as follows:

A0 = y3
0,

A1 = 3y2
0y1,

A2 = 3y2y2
0 + 3y0y2

1,

A3 = 3y3y2
0 + 6y0y1y2 + y3

1,
...

(56)

Substituting (56) into (55) gives the components of the
solution

y0 = 0.8888889x3+ 0.9375000x4+ 0.4800000x5

+ 0.1620370x6+ 0.0408163x7+ 0.0082031x8

+ 0.0013717x9+ 0.0001964x10+ 0.0000246x11

− 0.0005759x12− 0.0013652x13,

y1 = 0.0987654x3+ 0.0585938x4+ 0.0192000x5

+ 0.0045010x6+ 0.0008329x7+ 0.0001282x8

+ 0.0000169x9+ 0.0000019x10+ 0.0000002x11

+ · · · ,
y2 = 0.0109739x3+ 0.0036621x4+ 0.0007680x5

+ 0.0001250x6+ 0.0000169x7+ 0.0000020x8

+ 2.0907516× 10−7x9 + 1.9642857×10−8x10

+ 1.6799819× 10−9x11 + · · · ,
y3 = 0.0012193x3+ 0.0002289x4+ 0.0000307x5

+ 0.00000347x6+ 3.4693305× 10−7x7

+ 3.1292439× 10−8x8 + 2.5811748×10−9x9

+ 1.9642857× 10−10x10+1.3884148×10−11x11,
+ · · · ,

... (57)

The solution in a series form is thus approximately
given by

y = y0 + y1 + y2 + y3

= 0.9998476x3+ 0.9999847x4+ 0.4999987x5

+ 0.1666666x6+ 0.0416667x7+ 0.0083333x8

+ 0.0013888x9+ 0.0001984x10+ 0.0000248x11

· · · , (58)

which is in good agreement with the Taylor series of

the exact solution y(x) = x3ex given by

y(x) = x3 + x4 + 0.5x5 + 0.1666666x6

+ 0.0416666x7+ 0.008333x8

+ 0.0013888x9+ 0.000198x10

+ 0.0000248x11+ · · · .

(59)

Example 4. Consider the nonlinear boundary value
problem

y(4) +
3
x

y(3) + y2 − y3 = g(x), (60)

y(0) = 0, y′(0) = 0, y(1) = e, y′(1) = 3e, (61)

where g(x) = 18x−1ex + 30ex + 11xex + x2ex + x4e2x

− x6e3x. We use the 11 terms of the Taylor series of
g(x),

g(x)≈ 18
x
+ 48+ 50x+ 30x2+

49
4

x3 +
71
15

x4

+
29
10

x5 +
33
28

x6 − 6599
4032

x7 − 9649
2520

x8 − 1279991
302400

x9.

(62)

We define

L1 = x3 d
dx

(
x−1 d

dx

)
, (63)

L2 = x−2 d2

dx2 , (64)

so that

L−1
1 (.) =

∫ x

0
x
∫ x

1
x−3(.)dxdx, (65)

L−1
2 (.) =

∫ x

0

∫ x

0
x2(.)dxdx. (66)

In an operator form, (60) then becomes

L2L1y = g(x)+ y3 − y2. (67)

Applying L−1
2 on both sides of (67) and then incorpo-

rating given boundary conditions, (60) becomes

L1y = L1y
∣∣∣∣
x=0

+
d
dx

(L1y)
∣∣∣∣
x=0

· x

+ L−1
2 g(x)+L−1

2 (y3 − y2)

=−y′(0)x+L−1
2 g(x)+L−1

2 (y3 − y2)

= L−1
2 g(x)+L−1

2 (y3 − y2).

(68)
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Since L−1
1 L1y = y(x)− y(0)− 1

2 y′(1)x2, applying L−1
1

on both sides of (68) with given boundary conditions
yields

y(x) =
3e
2

x2 +L−1
1 L−1

2 g(x)

+L−1
1 L−1

2 (y3 − y2).
(69)

Proceeding as before, we have the recursive relation-
ship

y0(x) =
3e
2

x2 +L−1
1 L−1

2 g(x), (70)

yk+1(x) = L−1
1 L−1

2 Ak −L−1
1 L−1

2 Bk, k ≥ 0. (71)
The Adomian polynomials for the nonlinear terms y3

and y2 are computed as follows:

A0 = y3
0,

A1 = 3y2
0y1,

A2 = 3y2y2
0 + 3y0y2

1,

A3 = 3y3y2
0 + 6y0y1y2 + y3

1,
...

(72)

and

B0 = y2
0,

B1 = 2y0y1,

B2 = 2y2y0 + y2
1,

B3 = 2y3y0 + 2y1y2,
...

(73)

respectively.
Substituting (72) and (73) into (71) gives the com-

ponents of the solution

y0 = 0.9993606x2+ x3 + 0.5x4 + 0.1666667x5

+ 0.0416667x6+ 0.0083333x7+ 0.0017609x8

+ 0.0006393x9+ 0.0001637x10− 0.0001503x11

− 0.0002417x12− 0.0001897x13,

y1 =−0.0007032x2− 0.0003715x8− 0.0004406x9

− 0.0001391x10+ 0.0001527x11+ · · · ,
y2 = 2.9469693× 10−6x2 + 5.228892996×10−7x8

+ 3.1005857× 10−7x9 − 1.9496233× 10−7x10

− 3.6567264× 10−7x11 + · · · ,
y3 =−1.2055039× 10−8x2 − 2.3752524× 10−9x8

− 1.2993692× 10−9x9 + 1.0229462× 10−9x10

+ 1.6686604× 10−9x11 + · · · ,... (74)

We thus obtain an approximate solution given by

y = y0 + y1 + y2 + y3

= 0.9986603x2+ x3 + 0.5x4+ 0.1666667x5

+ 0.0416667x6+ 0.0083333x7

+ 0.0013899x8+ 0.0001990x9

+ 0.0000244x10+ 2.0591302× 10−6x11

+ · · · ,

(75)

which is in well agreement with Taylor series of the
exact solution y(x) = x2ex given by

y(x) = x2 + x3 + 0.5x4 + 0.1666667x5

+ 0.0416667x6+ 0.0083333x7

+ 0.0013888x8+ 0.0001984x9

+ 0.0000248x10+ 2.7557319× 10−6x11

+ · · · .

(76)

4. Homotopy Perturbation Method with
He’s Polynomials

It should be noted that the calculation of Adomian’s
polynomials to deal with the nonlinear terms in Exam-
ple 1, Example 3, and Example 4 is complex and dif-
ficult. This aspect is the demerit of the application of
Adomian’s decomposition method, though this method
has been proved to be more powerful and efficient than
some existing methods [21]. This difficulty may be
easily overcome without using Adomian’s polynomi-
als when the so-called He’s polynomials are used to
solve the problem. We illustrate this in this section by
revisiting and solving Example 1 and Example 3 by
the homotopy perturbation method (HPM) with He’s
polynomials [22 – 24].

Revisited Example 1. Consider the nonlinear
boundary value problem

y′′ − 1
x

y′ =
x2

3
y5, (77)

y(0) = 1, y′(1) =−
√

3
8

. (78)

With equation (26), we construct the following homo-
topy:

y(x)− y(0)− 1
2

y′(1)x2 − pL−1
1

x4

3
N(y) = 0, (79)
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where N(y) = y5, p ∈ [0,1] is the embedding parame-
ter, L−1

1 (·) is defined by (24).
According to He’s homotopy perturbation method

[14, 15], we assume that the solution of (79) is

y = y0 + py1 + p2y2 + · · · . (80)

When p → 1, (80) becomes the approximate solution
of (77) and (78), i. e.,

lim
p→1

y = y0 + y1 + y2 + · · · (81)

is the exact solution of (77) and (78). The convergence
of the series in (81) to the exact solution is discussed
by He in [14, 15].

The nonlinear term N(y) can be expressed in the
form

N(y) = H(y0)+ pH(y0,y1)+ p2H(y0,y1,y2)+ · · · ,
(82)

where H(y0, · · · ,yn) is called He’s polynomial [22] de-
fined by

H(y0, · · · ,yn) =
1
n!

dn

dpn N
( n

∑
k=0

pkyk

)
p=0

,

n = 0,1,2,3 · · · .
(83)

Substituting (80) and (82) into (79), and collecting the
coefficients of like powers of p, we have[

y0 − y(0)− 1
2

y′(1)x2
]

p0 +

[
y1 −L−1

1
x4

3
y5

0

]
p1

+

[
y2 −L−1

1
x4

3
(
5y4

0y1
)]

p2 +

[
y3 −L−1

1
x4

3
(
5y2y4

0

+ 10y3
0y2

1
)]

p3 +

[
y4 −L−1

1
x4

3
(
5y3y4

0 + 20y2y1y3
0

+ 10y3
1y2

0
)]

p4 + · · ·= 0,

(84)

from which we have simultaneously the approximate
solution to (77) and (78) given in (32) and He’s poly-
nomials

H(y0) = y5
0,

H(y0,y1) = 5y4
0y1,

H(y0,y1,y2) = 5y2y4
0 + 10y3

0y2
1,

H(y0,y1,y2,y3) = 5y3y4
0 + 20y2y1y3

0 + 10y3
1y2

0,
...

(85)

Revisited Example 3. Consider the nonlinear
boundary value problem

y′′′+
3
x

y′′ − y3 = g(x), (86)

y(0) = 0, y′(0) = 0, y(1) = e, (87)

where g(x) = 24ex + 36xex+ 12x2ex + x3ex − x9e3x.
With equation (52), we construct the following ho-

motopy:

y(x)−L−1
1 L−1

2 gT (x)−L−1
1 y− pL−1

1 L−1
2 N(y) = 0, (88)

where N(y) = y3, p∈ [0,1] is the embedding parameter
and, gT , L−1

1 (·) and L−1
2 (·) are defined by (46), (49),

and (50), respectively.
We assume that the solution of (88) is

y = y0 + py1 + p2y2 + · · · . (89)

The nonlinear term N(y) can be expressed in the form

N(y)=H(y0)+pH(y0,y1)+p2H(y0,y1,y2)+ · · · , (90)

where H(y0, · · · ,yn) is the He polynomial defined by
(83).

Substituting (89) and (90) into (88), and collecting
the coefficients of like powers of p, we have[
y0 −L−1

1 L−1
2 gT

]
p0 +

[
y1 −L−1

1 y0 −L−1
1 L−1

2 (y3
0)
]

p1

+
[
y2 −L−1

1 y1 −L−1
1 L−1

2 (3y2
0y1)

]
p2 +

[
y3 −L−1

1 y2

−L−1
1 L−1

2 (3y2
0y2 + 3y0y2

1)
]
p3 +

[
y4 −L−1

1 y3

−L−1
1 L−1

2 (3y3y2
0 + 6y0y1y2 + y3

1)
]
p4 + · · ·= 0, (91)

from which we have simultaneously the approximate
solution to (86) and (87) given in (58) and He’s poly-
nomials

H(y0) = y3
0,

H(y0,y1) = 3y2
0y1,

H(y0,y1,y2) = 3y2
0y2 + 3y0y2

1,

H(y0,y1,y2,y3) = 3y3y2
0 + 6y0y1y2 + y3

1,

...

(92)

He’s polynomials were used in the above examples
to overcome the complex and difficult calculation of
the Adomian polynomials in the Adomian decompo-
sition method. We calculated He’s polynomials and
the solutions simultaneously, and observed that He’s
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polynomials can completely replace Adomian’s poly-
nomials. This result reveals the applicability and ef-
ficiency of the homotopy perturbation method with
higher-order singular boundary value problems.

5. Conclusion

In this paper, we present a reliable modification of
the Adomian decomposition method to solve linear and
nonlinear problems with singular feature. It is demon-
strated that the presented approach can be well suited
to attain an accurate solution to the higher-order sin-
gular boundary value problems, linear and nonlinear
as well. The difficulty of those singular problems, due
to the existence of the singular point at x = 0, is over-

come in this contribution. He’s polynomials are also
used to overcome the complex and difficult calculation
of Adomian’s polynomials occurring in the application
of Adomian’s decomposition method, illustrating that
He’s polynomials can completely replace Adomian’s
polynomials. The other types of differential equations
with singular feature can also be similarly handled by
the proposed approach.
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