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In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation
utt −uxx −uyy − (u2)xx −uxxxx = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation
uxt − 6ux

2 + 6uuxx − uxxxx − uyy − uzz = 0. By using this method, an explicit numerical solution is
calculated in the form of a convergent power series with easily computable components. To illustrate
the application of this method numerical results are derived by using the calculated components of
the homotopy perturbation series. The numerical solutions are compared with the known analytical
solutions. Results derived from our method are shown graphically.
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1. Introduction

In this study, we consider the (2+1)-dimensional
Boussinesq equation and the (3+1)-dimensional Ka-
domtsev-Petviashvili (KP) equation:

utt −uxx −uyy − (u2)xx −uxxxx = 0, (1)

uxt −6ux
2 + 6uuxx−uxxxx −uyy −uzz = 0, (2)

where the initial conditions u(x,0,t) = f1(x, t),
uy(x,0, t) = f2(x,t) and u(x,0,z,t) = g1(x,z, t),
uy(x,0,z, t) = g2(x,z,t) are given. Nonlinear phenom-
ena play a crucial role in applied mathematics and
physics. The studies of the exact solutions for the
nonlinear evolution equations have attracted the atten-
tion of many mathematicians and physicists [1 – 4].
Senthilvelan [5] studied the travelling wave solutions
for the (2+1)-dimensional Boussinesq equation and the
(3+1)-dimensional KP equation by the homogeneous
balance method and explored certain new solutions
of the equations. Recently, El-Sayed and Kaya [6]
used the Adomian decomposition method (ADM) for
solving this problem.

Finding explicit exact and numerical solutions of
nonlinear equations efficiently is of major importance
and has widespread applications in numerical analy-
sis and applied mathematics. In this paper, we will
represent the homotopy pertubation method (HPM) to
find approximate solutions to the (2+1)-dimensional
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Boussinesq equation and the (3+1)-dimensional KP
equation.

The homotopy perturbation method (HPM) was
first proposed by the Chinese mathematician Ji-Huan
He [7, 8]. Unlike classical techniques, the homotopy
perturbation method leads to an analytical approximate
and to exact solutions of the nonlinear equations easily
and elegantly without transforming the equation or lin-
earizing the problem and with high accuracy, minimal
calculation, and avoidance of physically unrealistic as-
sumptions. As a numerical tool, the method provides
us with a numerical solution without discretization of
the given equation and therefore it is not effected by
computation round-off errors and one is not faced with
the necessity of large computer memory and time.

The essential idea of this method is to introduce a
homotopy parameter, say p, which takes values from 0
to 1. When p = 0, the system of equations usually
reduces to a sufficiently simplified form, which nor-
mally admits a rather simple solution. As p is gradu-
ally increased to 1, the system goes through a sequence
of ‘deformations’, the solution for each of which is
‘close’ to that at the previous stage of ‘deformation’.
Eventually at p = 1, the system takes the original form
of the equation and the final stage of ‘deformation’
gives the desired solution. One of the most remarkable
features of the HPM is that usually just a few pertur-
bation terms are sufficient for obtaining a reasonably
accurate solution. This technique has been employed
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to solve a large variety of linear and nonlinear prob-
lems [9 – 24]. The interested reader can see the Refer-
ences [25 – 28] for last development of HPM.

2. The Homotopy Perturbation Method

Consider the following nonlinear differential equa-
tion:

A(u)− f (r) = 0, r ∈ Ω , (3)

with boundary conditions

B
(

u,
∂u
∂n

)
= 0 r ∈ Γ , (4)

where A is a general differential operator, B is a bound-
ary operator, f (r) is a known analytic function, Γ is the
boundary of the domain Ω .

The operator A can, generally speaking, be divided
into two parts L and N, where L is linear and N is non-
linear, therefore (3) can be written as,

L(u)+ N(u)− f (r) = 0. (5)

By using the homotopy technique, one can construct a
homotopy v(r, p) : Ω × [0,1]→ ℜ which satisfies

H(v, p) = (1− p)[L(v)−L(u0)]+ p[A(v)− f (r)]
= 0

(6a)

or

H(v, p) = L(v)−L(u0)+ pL(u0)+ p[N(v)− f (r)]
= 0,

(6b)

where p[0,1] is an embedding parameter and u0 is the
initial approximation of (3) which satisfies the bound-
ary conditions. Clearly, we have

H(v,0) = L(v)−L(u0) = 0 (7)

or

H(v,1) = A(v)− f (r) = 0. (8)

The changing process of p from zero to unity is just
that of v(r, p) changing from u0(r) to u(r). This is
called deformation and L(v)− L(u0) and A(v)− f (r)
are called homotopic in topology. If the embedding
parameter p; (0 ≤ p ≤ 1) is considered as a ‘small

parameter’, applying the classical perturbation tech-
nique, we can assume that the solution of (6) can be
given as a power series in p , i. e.,

v = v0 + pv1 + p2v2 + . . . (9)

and setting p = 1 results in the approximate solution
of (3) as

u = lim
p→1

v = v0 + v1 + v2 + . . . . (10)

3. Application of HPM

3.1. Application of HPM to the (2+1)-Dimensional
Boussinesq Equation

In order to solve (1) by HPM, we choose the initial
approximation

u(x,0, t) = f1(x, t), uy(x,0, t) = f2(x, t) (11)

and construct the following homotopy:

uyy−(u0)yy = p
[
utt −uxx−(u2)xx−uxxxx −(u0)yy

]
.

(12)

Assume the solution of (12) in the form

u(x,y, t) = u0(x,y, t)+ pu1(x,y, t)

+ p2u2(x,y, t)+ p3u3(x,y, t)+ . . . .
(13)

Substituting (13) into (12) and collecting terms of the
same power of p gives:

p0 : (u0)yy − (u0)yy = 0, (14)

p1 : (u1)yy = (u0)tt − (u0)xx − (u0
2)xx

− (u0)xxxx, (15)

p2 : (u2)yy = (u1)tt − (u1)xx − (2u0u1)xx

− (u1)xxxx, (16)

p3 : (u3)yy = (u2)tt − (u2)xx

− (2u0u2 + u1
2)xx − (u2)xxxx, (17)

p4 : (u4)yy = (u3)tt − (u3)xx

− (2u0u3 + 2u1u2)xx − (u3)xxxx,(18)

p5 : (u5)yy = (u4)tt − (u4)xx −
(
2u0u4

+ 2u1u3 + u2
2)

xx − (u4)xxxx, (19)
. . .
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We can start with the initial approximation and all the
linear equations above can be easily solved, so we get
all the solutions. The solution of (12) can be obtained
by setting p = 1 in (13):

u(x,y, t) = u0(x,y,t)+ u1(x,y,t)+ u2(x,y,t)

+ u3(x,y,t)+ u4(x,y,t)+ . . . . (20)

3.2. Application of HPM to the (3+1)-Dimensional
KP Equation

In order to solve (2) by HPM, we choose the initial
approximation

u(x,0,z, t) = g1(x,z,t), uy(x,0,z,t) = g2(x,z, t)

and construct the following homotopy:

uyy−(u0)yy = p(uxt −6(u2)x−6uuxx−uzz−(u0)yy).
(21)

Assume the solution of (21) in the form

u(x,y, t) = u0(x,y,t)+ pu1(x,y,t)+ p2u2(x,y,t)

+ p3u3(x,y,t)+ . . . . (22)

Substituting (22) into (21) and collecting terms of the
same power of p gives:

p0 : (u0)yy − (u0)yy = 0, (23)

p1 : (u1)yy = (u0)xt − (u0
2)x − (u0)xx(u0)

− (u0)xxxx − (u0)zz, (24)

p2 : (u2)yy = (u1)xt −2(u0)x(u1)x − (u0)xx(u1)

− (u1)xx(u0)− (u1)xxxx − (u1)zz, (25)

p3 : (u3)yy = (u2)xt −2(u0)x(u2)x − (u1
2)x

− (u0)xx(u2)− (u1)xx(u1)

− (u2)xx(u0)− (u2)xxxx − (u2)zz, (26)

p4 : (u4)yy = (u3)xt −2(u0)x(u3)x −2(u1)x(u2)x

− (u0)xx(u3)− (u1)xx(u2)

− (u2)xx(u1)− (u3)xx(u0)

− (u3)xxxx − (u3)zz, (27)

p5 : (u5)yy = (u4)xt −2(u0)x(u4)x −2(u1)x(u3)x

− (u2
2)x − (u0)xx(u4)− (u1)xx(u3)

− (u2)xx(u2)− (u3)xx(u1)

− (u4)xx(u0)− (u4)xxxx − (u4)zz, (28)
. . .

We can start with the initial approximation and all the
linear equations above can be easily solved, so we get
all the solutions. The solution of (21) can be obtained
by setting p = 1 in (22):

u(x,y,z, t) = u0(x,y,z, t)+ u1(x,y,z, t)
+ u2(x,y,z, t)+ u3(x,y,z, t)
+ u4(x,y,z, t)+ . . . .

(29)

4. Test Examples

In this section we will be concerned with the solitary
wave solutions of the Boussinesq equation (1) and the
KP equation (2).

In the first example, we consider the Boussinesq
equation (1) which has the solitary wave solution. The
solution of (1) is subject to the initial conditions

u(x,0, t) = K1 −6α2R2 tanh2(R(αx− ct)),

uy(x,0, t) = −12α2β R3 sech2(R(αx− ct))
· tanh(R(αx− ct)).

(30)

Using the homotopy perturbation procedure (11) –
(20), we obtain following components:

u0 = 0,

u1 = K1 −12α2β R3ysech2(Rη) tanh(Rη)

−6α2R2 tanh2(Rη),

(31)

u2 =
3α2R4y2

2

[
3α2−3c2−132α4R2+2α2 cosh(2Rη)

−2c2 cosh(2Rη)+104α4R2 cosh(2Rη)−α2 cosh(4Rη)

+c2 cosh(4Rη)−4α4R2 cosh(4Rη)
]

sech(Rη)6

+α2β R5y3
[
−9α2 + 9c2 + 492α4R2 −8α2 cosh(2Rη)

+8c2 cosh(2Rη)−224α4R2 cosh(2Rη)+α2 cosh(4Rη)

−c2 cosh(4Rη)+ 4α4R2 cosh(4Rη)
]

· sech6(Rη) tanh(Rη), (32)

u3 = 3α2R4y2
[
3K1 + 54α2R2 + 2K1 cosh(2Rη)

−60α2R2 cosh(2Rη)−K1 cosh(4Rη)

+6α2R2 cosh(4Rη)
]

sech6(Rη)+
α2R6y4

32

[
95α4

−190α2c2 + 95c4−9800α6R2 −1920α4β 2R2

+9800α4c2R2 + 1249520α8R4 + 86α4 cosh(2Rη)

−172α2c2 cosh(2Rη)+ 86c4 cosh(2Rη)
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−172α2c2 cosh(2Rη)+ 86c4 cosh(2Rη)

−1232α6R2 cosh(2Rη)−192α4β 2 cosh(2Rη)

+1232α4c2 cosh(2Rη)−1411744α8R4 cosh(2Rη)

−32α4 cosh(4Rη)+ 64α2c2 cosh(4Rη)

−32c4 cosh(4Rη)+ 7616α6R2 cosh(4Rη)

+1536α4β 2R2 cosh(4Rη)−7616α4c2R2 cosh(4Rη)

+233728α8R4 cosh(4Rη)−22α4 cosh(6Rη)

+44α2c2 cosh(6Rη)−22c4 cosh(6Rη)

−944α6R2 cosh(6Rη)−192α4β 2R2 cosh(6Rη)

+944α4c2R2 cosh(6Rη)−8032α8R4 cosh(6Rη)

+α4 cosh(8Rη)−2α2c2 cosh(8Rη)+ c4 cosh(8Rη)

+8α6R2 cosh(8Rη)−8α4c2R2 cosh(8Rη)

+16α8R4 cosh(8Rη)
]

sech10(Rη)+ 2α4β R5y3
[
−9K1

−210α2R2 −8K1 cosh(2R− ct + αx)

+144α2R2 cosh(2Rη)+ K1 cosh(4Rη)

−6α2R2 cosh(4Rη)
]

sech(Rη)6 tanh(Rη)

+
α2β R7y5

80

[
−512α4+1030α2c2−515c4+60200α2R2

−60200α4c2R2 −7215920α8R4 −596α4 cosh(2Rη)

+1192α2c2 cosh(2Rη)−596c4 cosh(2Rη)

+1192α2c2 cosh(2Rη)−596c4 cosh(2Rη)

+29792α6R2 cosh(2Rη)−29792α4c2R2 cosh(2Rη)

+6533824α8R4 cosh(2Rη)−28α4 cosh(4Rη)

+56α2c2 cosh(4Rη)−28c4 cosh(4Rη)

−28448α6R2 cosh(4Rη)+ 28448α4c2R2 cosh(4Rη)

−749248α8R4 +(52α4−104α2c2+52c4+1952α6R2

−1952α4c2R2 + 16192α8R4)cosh(6Rη)

−(α4 −2α2c2 + c4 + 8α6R2 −8α4c2R2

+16α8R4)cosh(8Rη)
]

sech10(Rη) tanh(Rη). (33)

The series solution is

ψ(x, t) =
n

∑
m=0

um(x,t), (34)

for n = 3, the HPM truncated series solution therefore

ψ(x,y, t) = u0(x,y,t)+ u1(x,y,t)
+ u2(x,y,t)+ u3(x,y,t)

(35)

and so on, where η = (αx−ct). In this manner the rest
of the components of the homotopy perturbation series

(a)

(b)

Fig. 1. (a) Truncated HPM series solution (35) and (b) for the
solitary wave solution (36) of (1) with t = 0.5 when α = 5,
β = 0.01, γ = 1, R = 0.02.

were obtained. Following this procedure as in the first
example, substituting (31) – (33) into (35), we obtained
the closed form of the soliton solution u(x, t) in a close
form solution

u(x,y, t) = K1−6α2R2 tanh2(R(αx+β y−ct)), (36)

where c1 =
√

α2 + β 2 + 4α2R2, K1 = 6α2R2, and α ,
β , R are arbitrary constants.

In the second example, we will consider the KP
equation (2) with the initial conditions

u(x,0,z, t) = K + 2α2R2 tanh2(Rζ ),

uy(x,0,z, t) = 4α2β R3 sech2(Rζ ) tanh(Rζ ),
(37)

where ζ = (αx+β y−ct), c =−(β 2 +γ2 +4α4R2)/α ,
K =−2α2R(2+R)/3, and α , β , γ , R are arbitrary con-
stants.
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Fig. 2. Error between the solitary wave solution u(x,t) and
the truncated series solution ψ(x,t) at t = 0.5 when α = 5,
β = 0.01, γ = 1, R = 0.02.

Using the homotopy perturbation procedure (21) –
(29), we obtain following components:

u0 = 0,

u1 = K + 4α2β R3ysech(Rζ )2 tanh(Rζ )

+ 2α2R2 tanh(Rζ )2,

(38)

u2 =
α2R4y2

2

[
3αc−3γ2 + 132α4R2 −2αccosh(2Rζ )

−2γ2 cosh(2Rζ)−104α4R2 cosh(2Rζ)+αccosh(4Rζ)

+γ2 cosh(4Rζ )+ 4α4R2 cosh(4Rζ )
]

sech6(Rζ )

+
α2β R5y3

3

[
9αc + 9γ2 −492α4R2 + 8αccosh(2Rζ )

+8γ2 cosh(2Rζ )+ 224α4R2 cosh(2Rζ )

−αccosh(4Rζ )− γ2 cosh(4Rζ )

−4α4R2 cosh(4Rζ )
]

sech6(Rζ ) tanh(Rζ ), (39)

u3 =
α2R6y4

96

[
−95α2c2 −190αcγ2−95γ4

+9800α5cR2 + 9800α4γ2R2 −1249520α8R4

−86α2c2 cosh(2Rζ )−172αcγ2 cosh(2Rζ )

−86γ4 cosh(2Rζ )+ 1232α5cR2 cosh(2Rζ )

+1232α4γ2R2 cosh(2Rζ )+ 1411744α8R4 cosh(2Rζ )

+32α2c2 cosh(4Rζ )+ 64αcγ2 cosh(4Rζ )

+32γ4 cosh(4Rζ )−7616α5cR2 cosh(4Rζ )

−7616α4γ2R2 cosh(4Rζ )−233728α8R4 cosh(4Rζ )

+22α2c2 cosh(6Rζ )+ 44αcγ2 cosh(6Rζ )

+22γ4 cosh(6Rζ )+ 944α5cR2 cosh(6Rζ )

+944α4γ2R2 cosh(6Rζ )+ 8032α8R4 cosh(6Rζ )

−α2c2 cosh(8Rζ )−2αcγ2 cosh(8Rζ )− γ4 cosh(8Rζ )

−8α5cR2 cosh(8Rζ )−8α4γ2R2 cosh(8Rζ )

−16α8R4 cosh(8Rζ )
]

sech10(Rζ )

+
αcβ R7y5

240

[
512α2c2 + 1030αcγ2 + 515γ4

−60200α5cR2 −60200α4γ2R2 + 7215920α8R4

+596α2c2 cosh(2Rζ )+ 1192αcγ2 cosh(2Rζ )

+596γ4 cosh(2Rζ )−29792α5cR2 cosh(2Rζ )

−29792α4γ2R2 cosh(2Rζ)−6533824α8R4 cosh(2Rζ)

+28α2c2 cosh(4Rζ )+ 56αcγ2 cosh(4Rζ )

+28γ4 cosh(4Rζ )+ 28448α5cR2 cosh(4Rζ )

+28448α4γ2R2 cosh(4Rζ )+ 749248α8R4 cosh(4Rζ )

−52α2c2 cosh(6Rζ )−104αcγ2 cosh(6Rζ )

−52γ4 cosh(6Rζ )−1952α5cR2 cosh(6Rζ )

−1952α4γ2R2 cosh(6Rζ )−16192α8R4 cosh(6Rζ )

+α2c2 cosh(8Rζ )+ 2αcγ2 cosh(8Rζ )+ γ4 cosh(8Rζ )

+8α5cR2 cosh(8Rζ )+ 8α4γ2R2 cosh(8Rζ )

+16α8R4 cosh(8Rζ )
]

sech10(Rζ ) tanh(Rζ ). (40)

With the series solution

ψ(x, t) =
n

∑
m=0

um(x, t), (41)

for n = 3, we obtain the HPM truncated series solution
as

ψ(x,y,z, t) = u0(x,y,z, t)+ u1(x,y,z, t)

+ u2(x,y,z, t)+ u3(x,y,z, t),
(42)

where ζ = (αx+γy−ct), c =−(β 2 +γ2 +4α4R2)/α ,
K = −2α2R(2 + R)/3, and α , β , γ , R are arbitrary
constants. In this manner the rest of the components
of the decomposition series were obtained. Substitut-
ing u0 = 0 and (38) – (40) into (42) gives the solution
u(x,y,z, t) in a series form and the series can be written
in a closed form solution by

u(x,y,z, t) = K + 2α2R2 tanh2(R(−(ct)
+ αx + β y + γz)),

(43)

where c = −(β 2 + γ2 + 4α4R2)/α , K = −2α2R(2 +
R)/3, and α , β , γ , R are arbitrary constants. This result
can be verified through substitution [6].
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Fig. 3. Truncated HPM series solution (42) for (2) with t =
z = 0.5 when α = 5, γ = 1, R = 0.02.

Fig. 4. Solitary wave solution (43) of (2) at t = z = 0.5 when
α = 5, β = 0.01, γ = 1, R = 0.02.

In the third example, we will consider the KP equa-
tion (2) with the initial conditions for numerical com-
parison purpose as

u(x,0,z, t) = K + 2α2R2 tanh(Rζ ),

uy(x,0,z, t) = 4α2β R3 sech2(Rζ ) tanh(Rζ ),
(44)

where ζ = (αx+γy−ct), c =−(β 2 +γ2 +4α4R2)/α ,
K =−2α2R(2+R)/3, and α , β , γ , R are arbitrary con-
stants.

Using homotopy perturbation procedure (21) – (29),
we obtain following components:

u0 = 0,

u1 =
∫ y

0

∫ y

0

[
(u0)xt − (u0

2)x − (u0)xx(u0)

−(u0)xxxx − (u0)zz
]
dydy,

Fig. 5. Error between the solitary wave solution u(x,t) (43)
and the truncated series solution ψ(x,t) at t = z = 0.5 when
α = 5, β = 0.01, γ = 1, R = 0.02.

Fig. 6. Solitary wave solution (46) of (2) at t = z = 0.5 when
α = 5, β = 0.01, γ = 1, R = 0.02.

u2 =
∫ y

0

∫ y

0

[
(u1)xt −2(u0)x(u1)x − (u0)xx(u1)

−(u1)xx(u0)− (u1)xxxx − (u1)zz
]
dydy,

. . . (45)

and the exact solution

u(x,y,z, t) = K + 2α2R2 tanh2(R(−(ct)

+ αx + β y + γz))2,
(46)

where ζ = (αx+γy−ct), c =−(β 2 +γ2 +4α4R2)/α ,
K =−2α2R(2+R)/3, and α , β , γ , R are arbitrary con-
stants.

5. Conclusion

In this study, the HPM was used for solving the
Boussinesq equation (1) and the KP equation (2) with
initial conditions. We compared the approximation so-
lution with the exact solution of the corresponding
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equation. Numerical approximations show a high de-
gree of accuracy. The numerical results we obtained

justify the advantage of this methodology, even in the
few terms the approximation is accurate.
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