Antimicrobial Activity of Kaurane Diterpenes against Oral Pathogens

Sergio R. Ambrosioa, Niege A. J. C. Furtadob, Dionéia C. R. de Oliveirac, Fernando B. da Costab, Carlos H. G. Martinsa, Tatiane C. de Carvalhoa, Thiago S. Portoa, and Rodrigo C. S. Veneziania,*

a Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil. Fax: +55-16-37118878. E-mail: rsvenez@unifran.br
b Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
c Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil

* Author for correspondence and reprint requests

Two kaurane diterpenes, ent-kaur-16(17)-en-19-oic acid (KA) and 15-\textit{β}-isovaleryloxy-ent-kaur-16(17)-en-19-oic acid (KA-Ival), isolated from \textit{Aspilia foliacea}, and the methyl ester derivative of KA (KA-Me) were evaluated against oral pathogens. KA was the most active compound, with MIC values of 10 \textmu g mL-1 against the following microorganisms: \textit{Streptococcus sobrinus}, \textit{Streptococcus mutans}, \textit{Streptococcus mitis}, \textit{Streptococcus sanguinis}, and \textit{Lactobacillus casei}. However, KA did not show significant activity against \textit{Streptococcus salivarius} and \textit{Enterococcus faecalis} with MIC values equal to 100 and 200 \textmu g mL-1, respectively. Our results show that KA has potential to be used as a prototype for the discovery of new effective anti-infection agents against microorganisms responsible for caries and periodontal diseases. Moreover, these results allow to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to studies on the structure-activity relationship of this type of metabolites with respect to caries and periodontal diseases.

\textit{Key words:} Kaurane Diterpenes, Oral Pathogens, Antimicrobial Activity, \textit{Aspilia foliacea}

Introduction

Dental plaque is a biofilm consisting of microorganisms generally present on the tooth surface. This biofilm plays an important role in the development of dental caries and periodontal diseases (Koo \textit{et al.}, 2000). Oral \textit{Streptococci}, which are commonly isolated from human teeth, are the main microorganisms responsible for these infectious diseases (Hirasawa and Takada, 2002).

Extensive efforts have been made toward the search for antibacterial compounds that can be incorporated into dental products (Cai and Wu, 1996). Chlorhexidine, one of the most important antibacterial agents against oral pathogens (Decker \textit{et al.}, 2005), has gained the approval of the American Dental Association Council on Dental Therapeutics (Cai and Wu, 1996). However, various adverse effects such as teeth staining and increased calculus formation are associated with the current use of products containing this compound (Cai and Wu, 1996). Also, chlorhexidine is much less effective at reducing the levels of \textit{Lactobacillus}, which are strongly related to caries progression in human mouths (Featherstone, 2006). These drawbacks justify the research on new effective antibacterial compounds that could be employed in caries prevention.

Natural products, especially those derived from higher plants, provide a rich source of novel and diverse antimicrobial agents (Cai and Wu, 1996; Koo \textit{et al.}, 2000; Rios and Recio, 2005). However, little is known about the potential of secondary plant metabolites against oral pathogens (Cai and Wu, 1996; Koo \textit{et al.}, 2000). Many reports have extensively shown that kaurane-type diterpenes exhibit several important biological properties, including antiparasitic effects (Batista \textit{et al.}, 2007; Da Costa \textit{et al.}, 1996), antispasmodic and relaxant actions on the smooth muscle (Ambrosio \textit{et al.}, 2006; Tirapelli \textit{et al.}, 2004), as well as analgesic and anti-inflammatory activities (Okuyama \textit{et al.}, 1991; Paiva \textit{et al.}, 2002). Members of this class of diterpenes have been reported to have cytotoxic effects, (Hanson, 2006; Ghisalberti, 1997), antiproliferative action on tumour cell cultures (Mongelli...
et al., 2002), and significant antimicrobial activity against Gram-positive and Gram-negative bacteria and yeasts, including *Bacillus subtilis* (Ghisalberti, 1997; Slimestad et al., 1995), *Staphylococcus aureus*, *Mycobacterium smegmatis* (Ghisalberti, 1997; Mitscher et al., 1983), *Saccharomyces cerevisiae*, *Escherichia coli*, *Streptococcus* /beta two, and *Enterococcus faecalis* among others. Moreover, a previous screening using Brazilian plants against oral pathogens performed in our laboratories showed that plant extracts rich in kaurane diterpenes are very effective against these microorganisms. Our results pointed out that these metabolites are a promising source of new prototypes for the development of antibacterial agents against cariogenic microorganisms.

Considering the activity of plant extracts rich in kaurane diterpenes against oral pathogens, the aim of this study was to evaluate the activity of kaurane diterpenes isolated from *Aspilia foliacea*, as well as that of a semi-synthetic derivative, against some oral microorganisms, including *Streptococcus mutans*, which is considered one of the primary causative agents of dental caries.

Materials and Methods

Plant material

Aspilia foliacea (Spreng.) Baker was collected in Brazil by Walter Vichnewski at the GO-118 highway (km 11) in November 1995. The plant material was identified by João Moreira dos Santos (Museu Paraense Emílio Goeldi, PA, Brazil). A voucher specimen (Vichnewski # 367) was deposited in the herbarium of the Instituto de Biologia, Universidade de Campinas, SP, Brazil.

Extraction and isolation

Underground parts of *Aspilia foliacea* were air-dried at 40 °C. The powdered material (650 g) was exhaustively extracted by maceration at room temperature using chloroform (5 L) to give the crude extract (6.1 g) after solvent evaporation under reduced pressure. This extract was re-suspended in methanol/water (9:1, v/v) and extracted with *n*-hexane, followed by extraction with dichloromethane, to give crude extracts (0.45 and 1.12 g, respectively) after solvent evaporation under reduced pressure.

The *n*-hexane extract (0.45 g) was chromatographed over silica gel 60 (0.063–0.200 mm) using classic chromatography with *n*-hexane and increasing amounts of ethyl acetate as eluents. This procedure yielded 40 fractions (50 mL each), which were grouped into six new ones (Fr-1 to Fr-6) after TLC analysis. A solid mass appeared in Fr-2 (130 mg), and compound 1 [ent-kaur-16(17)-en-19-oic acid, KA, 70 mg] was obtained after washing the solid with methanol.

The dichloromethane extract (1.12 g) was chromatographed over silica gel 60H (Merck, art. no. 7736) using vacuum liquid chromatography (VLC) (Pelletier et al., 1986) with increasing amounts of ethyl acetate in *n*-hexane. Solvent was removed under reduced pressure in a rotatory evaporator, and six fractions (Fr-1 to Fr-6, 150 mL each) were obtained. Fr-3 (150 mg) was fractionated by medium pressure chromatography (“flash” chromatography) (Still et al., 1978) using silica gel 60 (Merck, art. no. 9385, 0.040–0.063 mm) and isocratic *n*-hexane/ethyl acetate (4:1) and 1% acetic acid as the mobile phase, furnishing compound 2 [15-β-isovaleryloxy-ent-kaur-16(17)-en-19-oic acid, KA-Ival, 8 mg].

Preparative thin layer chromatography [PTLC, silica gel PF* 254*, 1 mm thickness, Merck, art. no. 7730, *n*-hexane/ethyl acetate (3:2) and 1% acetic acid] of Fr-4 (60 mg) furnished a mixture (7 mg) containing the diterpenes 15-β-hydroxy-ent-kaur-16(17)-en-19-oic acid (3) and 17-hydroxy-ent-kaur-15(16)-en-19-oic acid (4, respectively).

KA (1) (about 50 mg) was treated with CH$_3$N$_2$ in Et$_2$O (Da Costa et al., 1996), yielding the respective C-19 methyl ester derivative (KA-Me, 5). This compound was purified by flash chromatography with *n*-hexane/ethyl acetate (9:1) as the mobile phase, and identified by means of spectroscopic analysis.

The purity of the evaluated diterpenes 1, 2 and 5 was estimated by thin layer chromatography using different solvent systems, as well as 1H and 13C NMR analysis. We estimated that the purity of all the compounds evaluated against the microorganisms was in the range 95–98%.

Antimicrobial assays

The minimum inhibitory concentration (MIC) values of the diterpenes were determined in triplicate using the microdilution broth method (Andrews, 2001) in 96-well microplates. Standard strains from the American Type Culture Collection of the following microorganisms were used: *Enterococcus faecalis* (ATCC 4082), *Streptococcus*
Results and Discussion

The chemical structures of the diterpenes studied in this work are presented in Fig. 1. The spectral data of compounds 1 and 5 (Da Costa et al., 1996), 3 and 4 (Yahara et al., 1974), and 2 (Schtieingart and Pomilio, 1981) are in agreement with those published in the literature.

Among the evaluated diterpenes, compound 1 (KA) displayed the highest antibacterial activity (Table I), with MIC values of 10 μg mL⁻¹ for the following microorganisms: S. sobrinus, S. mutans, S. mitis, S. sanguinins, and L. casei. For S. salivarius and E. faecalis, KA was not significantly active against these microorganisms, displaying MIC values of 100 and 200 μg mL⁻¹, respectively. The MIC values of the pure diterpenes 2 and 5 ranged from 50 to values higher than 200 μg mL⁻¹ (Table I).

Chlorhexidine was used as positive control, and its MIC values for each microorganism are described in Table I.

In recent years, the search for new anti-infection natural compounds has been the aim of many research groups (Rios and Recio, 2005), since many bacterial pathogens have developed defense mechanisms and resistance against antimicrobial agents (Kuzma et al., 2007). Therefore, it is reasonable to search for natural products that have anti-plaque properties and antimicrobial activity against oral pathogens (Koo et al., 2000). In this work, we report on a comparison among structurally similar kaurane-type diterpenes with respect to their antibacterial activity against the main microorganisms responsible for dental caries and periodontal diseases for the first time.

Rios and Recio (2005) analyzed the past, present and future of medicinal plants in the search for anti-infection agents, and they concluded that pure compounds displaying MIC values lower than or equal to 10 μg mL⁻¹ are very promising for the development of antibacterial drugs. In this sense, our results show that compound 1 has potential to be used as a prototype for the discovery of new effective anti-infection agents against microorganisms responsible for caries and periodontal diseases.

The results of the in vitro assays for 1 and 5 (Table I) clearly show that the presence of the carboxy group (C-19) causes an important contribution to the antibacterial activity against oral pathogens, and this activity decreases drastically in the case of the C-19 methyl ester. The structural analy-
sis of compounds 1 and 2 allow to conclude that the introduction of an ester group (isovalerylxyloxy) at C-15 significantly decreases the investigated activity.

Mendoza et al. (1997) evaluated some kaurane diterpenes against Gram-positive bacteria. The results of their study showed that the introduction of a hydrophilic 3-β-OH group drastically reduces the antibacterial activity of these compounds. The marked differences in the MIC values of some structurally very similar kaurane diterpenes previously reported by Mendoza et al. (1997), as well as the MIC values found in our present study reveal the great importance of understanding the structure-activity relationships of these compounds, since minor structural alterations may improve their activities against several bacteria.

To date, the reports on the antimicrobial activity of natural products against oral pathogens are scarce. However, comparing the MIC values against oral pathogens displayed by KA with those of previously described other secondary metabolites (Cai and Wu, 1996; Cunha et al., 2007; Tsuchiya et al., 1994), we can conclude that the kaurane-type diterpenes have potential use in the further development of natural anti-caries and anti-periodontal agents. Considering these results, it is important to emphasize that more biological, toxicological and structure-activity relationship studies must be undertaken, and the action mechanism of these diterpenes should be unveiled.

Acknowledgements

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Minimum inhibitory concentration [μg mL⁻¹ (μm)]</th>
<th>Chlorhexidine</th>
<th>1</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus faecalis</td>
<td>0.4 (0.69) 200.0 (661.26)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus casei</td>
<td>0.05 (0.09) 10.0 (33.06)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus mitis</td>
<td>0.05 (0.09) 10.0 (33.06)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>0.05 (0.09) 10.0 (33.06)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus sanguinis</td>
<td>0.4 (0.69) 10.0 (33.06)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus sobrinus</td>
<td>0.05 (0.09) 10.0 (33.06)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
<td>0.1 (0.17) 100.0 (350.63)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table I. In vitro antibacterial activity of the kaurane diterpenes 1, 2, 5 and chlorhexidine against oral pathogens.

* Inactive in the evaluated concentrations.

