Spin-Spin Coupling Constants $^{1}J(\text{Al}^{27},\text{C}^{13})$ and $^{1}J(\text{C}^{13},\text{B}^{11})$ in Comparable Organoaluminum and -boron Compounds. NMR Spectroscopy of Lithium Tetra(tert-butyl)alanate

Bernd Wrackmeyer and Elena V. Klimkina
Anorganische Chemie II, Universität Bayreuth, D-95440 Bayreuth, Germany
Reprint requests to Prof. Dr. B. Wrackmeyer. E-mail: b.wrack@uni-bayreuth.de

The 13C, 27Al and 11B NMR spectra of tri(tert-butyl)alane, AlBu$_3^\text{t}$, and of the corresponding borane, BBu$_3^\text{t}$, respectively, were examined in order to determine the magnitude of the coupling constants $^{1}J(\text{Al}^{27},\text{C}^{13}) = 94 \pm 5$ Hz and $^{1}J(\text{C}^{13},\text{B}^{11}) = 52 \pm 2$ Hz by measurement of the line widths of the 13C NMR signals and of the relaxation rates of the quadrupolar 27Al and 11B nuclei. This is the first example of $^{1}J(\text{Al}^{27},\text{C}^{13})$ determined for a monomeric trialkylalane. In addition, the coupling constants were calculated by DFT methods (B3LYP) using the 6-311+G(d,p) basis set. The 1H, 13C and 27Al NMR spectra of lithium tetra(tert-butyl)alanate, Li[AlBu$_4^\text{t}$], were measured under various conditions. Ion-pair separation in THF revealed the expected patterns for 27Al-13C spin-spin coupling across one and two bonds as well as for the three-bond 27Al-1$^\text{H}$ spin-spin coupling.

Key words: Trialkylaluminum, Trialkylboranes, Tetra(tert-butyl)alanate, 13C, 11B, 27Al NMR, Coupling Constants, DFT Calculations

Introduction

The straightforward observation of resolved splitting of NMR signals of spin-1/2 nuclei of type A owing to indirect nuclear A-X spin-spin coupling [$^{ij}J(A,X)$] with quadrupolar nuclei X is frequently hampered by rapid quadrupole-induced relaxation causing short relaxation times $T_Q(X)$. Therefore, scalar relaxation of the second kind [1], $T_2^{SC}(A)$, becomes efficient, and NMR signals of the nuclei A may become broad and weak. In the absence of other processes giving rise to marked broadening of spin-1/2 A NMR signals, the coupling constants $^{ij}J(A,X)$ can be calculated if $T_Q(X)$ is known (Eq. 1) [1, 2], where $\Delta \nu_b$ is the broadening of the A NMR signal caused by scalar relaxation of the second kind, S_X is the spin of the nucleus X.

$$\Delta \nu_b = \frac{4}{3\pi} S_X (S_X + 1) |^{ij}J(A,X)|^2 [T_Q(X)]$$

This procedure can be tested for $^{1}J(\text{C}^{13},\text{B}^{11})$ in trialkylboranes which are known to be monomers, and for which interactions with non-coordinating solvents can be neglected in this context. The situation is more complex in the case of $^{1}J(\text{Al}^{27},\text{C}^{13})$, since most trialkylalanes are dimers which may undergo fast or slow exchange processes, and therefore, the line widths of the 13C NMR signals can be a function of various effects. However, tri(tert-butyl)aluminum 1 is a monomer in solution and in the gas phase [3] (although weakly associated in the solid state [4]), and it should be a suitable candidate for determining $^{1}J(\text{Al}^{27},\text{C}^{13})$ for the first time in a tri-coordinate organoaluminum compound. Corresponding NMR data for the analogous borane 1B have been determined in this work (Scheme 1). In addition, we have included herein the calculations for the trimethylaluminum dimer 2$_1$, and for trimethylaluminum 2 and 1-aluminaadamantane 3 as monomers, for which experimental data are inaccessible. For comparison, experimental and calu-
lated NMR data of the corresponding boranes 2B and 3B are known [5]. Experimental coupling constants $^{1}J(^{27}\text{Al},^{13}\text{C})$ and $^{1}J(^{11}\text{B},^{13}\text{C})$ are available for the anions [AlMe$_{4}$] and [BMe$_{4}$] respectively, and in this work, we have determined a complete NMR data set for Li[AlBu$_{4}$] 5 [8] under various conditions, and for the adduct Me$_{2}$AlC(SiMe$_{3}$)$_{3}$-THF 6 [9].

Results and Discussion

^{13}C NMR spectra of AlBu$_{3}$ 1 have been reported [8, 10], although the assignment appears to be tentative, and the line shapes have neither been mentioned nor discussed. Numerous adducts of 1 have been studied by ^{1}H and ^{13}C NMR [11], and again information on quadrupolar nuclei [2]. Results of our measurements, literature data and our calculated NMR data are given in Table 1. In the case of 6, the line shapes of both ^{13}C and ^{1}H NMR signals critically depend on the conditions of measurement (*vide infra*). The determination of $^{3}J(^{27}\text{Al},^{13}\text{C})$ by line shape analysis of the ^{13}C NMR signals, taking the ^{27}Al spin relaxation into account, has been used for the trimethylaluminum dimer 2$_{2}$ [12] and also for other combination of spin-1/2 with quadrupolar nuclei [2]. Results of our measurements, literature data and our calculated NMR data are given in Table 1.

DFT calculations

The DFT calculations of the NMR data were based on the optimized gas phase geometries. In the case of 1B, the X-ray structural analysis has revealed negligible intermolecular interaction, and therefore, the calculated geometry should be very similar to that determined experimentally for the solid state [4b]. This is shown in Fig. 1. As in the solid state, the atoms

![Fig. 1. Comparison of calculated [B3LYP/6-311+G(d,p)] and experimental structures of MBu$_{3}$ (M = Al: 1; B: 1B).](image-url)
C1, C2 and C3 are exactly coplanar with the central boron atom and the intervening carbon atoms linked directly to boron. There is also good agreement between the respective calculated and experimental B–C–C bond angles. The calculated structure of 1 is analogous to that of 1B except of the Al–C–C bond angles. Again, the calculated structural data agree well with experimental findings for the solid state [4] and also with results from the gas phase electron diffraction study [3b], given for the fact that the molecules of 1 are weakly associated in the crystal lattice, and the determination of the latter has not been particularly precise. This association must be weak, since the trigonal planar surroundings of the aluminum atom are almost undistorted. Hyperconjugation has been invoked to explain certain structural features of 1 and 1B [4b], and this is supported by experimental and calculated NMR parameters, at least for trialkylboranes [5].

The calculated coupling constants $J(13C,11B)$ are in almost perfect agreement with experimental data, irrespective whether these were obtained from observed splitting in the 13C NMR spectra or by line shape analysis of the respective 13C NMR signals. The calculated data $J(27Al,13C)$ for 1 and 4 appear to be too small by $\approx 15\%$, when compared with experimental data, a fact which has already been noted for $J(29Si,13C)$ calculated by the same procedure [13]. There appears to be a systematic error in the calculations for third row element nuclei such as 29Al, 29Si, and potentially 31P. However, the trends of the experimental $J(27Al,13C)$ data are well reproduced. The experimental $J(27Al,13C)$ data for the dimer of AlMe3, 22 [12], may be inaccurate, in particular for the bridging methyl group. In the case of 22, the line shape analysis of the 13C NMR signals as a result of spin dynamics is hampered by dynamic processes involving intra- and inter-molecular exchange.

Further examples of line shape analysis

An application of the line shape analysis for 13C(Al–C) NMR signals is shown in Fig. 2 for the THF adduct of Me$_2$AlC(SiMe$_3$)$_3$ [9]. The aluminum atom bears two greatly different types of alkyl groups, and this should be mirrored by different coupling constants $J(27Al,13C)$, evident from the different line widths of the relevant 13C NMR signals. These experimental findings are supported by the calculated coupling constants $J(27Al,13C)$, when the model compound Me$_2$AlC(SiH$_3$)$_3$-THF is used.
Spin-Spin Coupling Constants $J(27\text{Al}, 13\text{C})$ and $J(13\text{C}, 11\text{B})$

Fig. 4. ^{13}C, ^{27}Al and ^1H NMR spectra of Li$[\text{AlBu}^t_4]$ in C_6D_6 under various conditions as stated. Traces C) give all relevant information on coupling constants involving ^{27}Al. The ^{13}C satellites in the $^{27}\text{Al}[^1\text{H}]$ NMR spectrum do not show any appreciable isotope-induced chemical shift $\Delta^{12/13}\text{C}(^{27}\text{Al}) (<0.5 \text{ ppb})$.

As can be seen from Fig. 2, ^{29}Si satellites are readily assigned for the $^{13}\text{C}(\text{SiMe}_3)$ NMR signals. However, there is no chance to detect the ^{29}Si satellites for the broad and weak $^{13}\text{C}(\text{Al–C–Si})$ NMR signal. The alternative for determining $J(^{29}\text{Si}, 13\text{C})$ is provided by ^{29}Si NMR spectra, for which almost perfect line shapes with an excellent signal-to-noise ratio can be achieved using $^1\text{H} \rightarrow ^{29}\text{Si}$ polarization transfer (e.g. INEPT [14]), as shown in Fig. 3. The relatively small value $J(^{29}\text{Si}, 13\text{C}) = 30.5 \text{ Hz}$ is typical of such silanes [13, 15].

NMR spectroscopy of Li$[\text{AlBu}^t_4]$

Addition of one equivalent of LiBut to AlBut_3 1 gives Li$[\text{AlBu}^t_4]$ 5 as reported [8]. If the LiBut in pentane is added to a pre-cooled (0 – 5 °C) solution of 1, there are no side reactions, and pure 5 can be obtained and used in solutions without further purification. As shown in Fig. 4, the information from the NMR spectra is greatly affected by the conditions. Without THF, the lithium seeks for coordinative saturation by interactions with the tert-butyl groups. Therefore, the tetrahedral surroundings of the ^{27}Al nucleus are significantly distorted, and quadrupole-induced relaxation is relatively fast (traces A). This is changed by adding THF. In the presence of a large excess of THF, the ions apparently become separated, and the tetrahedral symmetry around the ^{27}Al nucleus is largely restored. Consequently, the ^{27}Al relaxation rate is much slower. In fact, the line width of 2 Hz of the ^{27}Al NMR signal is the smallest line width of any ^{27}Al NMR signal reported so far (see e.g. [16]). It is the hitherto first known example for observing ^{13}C satellites in an ^{27}Al NMR spectrum. Therefore, the typical splitting patterns owing to resolved or partially resolved ^{27}Al-^{13}C and ^{27}Al-^1H spin-spin coupling across one, two and three bonds are clearly visible in the ^{13}C and ^1H NMR spectra, respectively (traces C).

Experimental Section

The preparation and the handling of samples were carried out observing the necessary precautions to exclude air and traces of moisture. The solvents used were carefully dried by established methods. Starting materials such as LiBut (1.7 M in pentane) (Aldrich) and aluminum trichloride (anhydrous, 99.99+ % Al) (STREM Chemicals) were commercial products. Tri(tert-butyl)aluminum 1 [3a, 17] ^1H NMR (250.1 MHz, C_{6}D_{6}, 298 K): $\delta (1^1\text{H}) = 1.03$ (123.7)
(s, 27H, CH₃), the corresponding borane 1B [18] and Me₂Al(C(SiMe₃)₂)-THF 6 [9] \(^{1}H\) NMR (250.1 MHz, C₆D₆, 298 K): \(\delta (J(\text{Si}^{29}, \text{H}) = 7.15, d^{13}C (\text{C}_{6} \text{D}_{6}) = 128.0, \delta^{29} \text{Si} = 0 \text{ for } \Xi(\text{Si}^{29}) = 19.87 \text{MHz}; \delta^{11} \text{B} = 0 \text{ for } \text{BF}_{3}-\text{OEt}_{2} \text{ with } \delta(\text{OEt}) = 39 (111.4) \text{ (s, 6H, } \text{Si(CH}_{3})_{3}), 1.05, 3.45 \text{ (m, m corresponding to } 32H, \text{ excess of } \text{THF})\] were prepared by literature procedures.

NMR spectra were recorded at 23°C on Bruker ARX 250 and DRX 500 or Varian Inova 400 spectrometers: \(^{1}H\), \(^{13}C, ^{27}Al\), and \(^{29}Si\) NMR (refocused INEPT [14] based on \(^{2}J(\text{Si}^{29}, \text{H}) = 7 \text{ Hz} \) of \(\text{Li}_{2} \text{Al}

Lithium-tetra(tert-butyl)alanate 5

A solution of 1 (136 mg, 0.68 mmol) in C₆D₆ (1 mL) was cooled to 0–5°C, and LiBu’ (0.4 mL of a 1.7 M solution in pentane, 0.68 mmol) was added. The mixture was warmed to r. t. and stirred for 10 min, and volatile materials were then removed \textit{in vacuo}. The remaining solid was dissolved in C₆D₆ (0.6 mL), the solution was centrifugated, and the liquid was collected. Then THF (finally 0.5 mL) was added in portions. \(^{1}H\) NMR (500.1 MHz, C₆D₆, 298 K): \(\delta = 1.39 \text{ (m, 36H, CH}_{3}), 1.53, 3.39 \text{ (m, m corresponding to } 32H, \text{ excess of } \text{THF})\]

All calculations were performed using the GAUSSIAN 03 program package [19]. Optimization of the gas phase geometries was carried out with DFT methods (B3LYP) [20] and the 6-311+G(d,p) basis set [21]. Frequencies were calculated analytically to characterize the stationary points of the optimized geometries as minima by the absence of imaginary frequencies. Chemical shifts (GIAO [22]) and coupling constants [23] were calculated in the framework of the GAUSSIAN 03 program [19].

Acknowledgement

Support of this work by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

