Sophoraflavanone G from \textit{Sophora pachy-carpa} Enhanced the Antibacterial Activity of Gentamycin against \textit{Staphylococcus aureus}

Ali Fakhimia, Mehrdad Iranshahib,*, Seyed Ahmad Emamib, Esam Amin-Ar-Ramimehb, Gholamreza Zarrinia, and Ahmad Reza Shahverdia,*

a Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155/6451, Tehran, Iran.
Fax: +98-21-66461178.
E-mail: shahverd@sina.tums.ac.ir

b Department of Pharmacognosy, Mashhad University of Medical Sciences, Mashhad, Iran

* Authors for correspondence and reprint requests

Z. Naturforsch. \textbf{61c}, 769–772 (2006); received April 24/July 24, 2006

In this study the enhancement effect of \textit{Sophora pachy-carpa} roots' acetone extract on the antibacterial activity of gentamycin was evaluated against \textit{Staphylococcus aureus}. Disc diffusion and broth dilution methods were used to determine the antibacterial activity of gentamycin in the absence and presence of plant extract and its various fractions separated by TLC. A clinical isolate of \textit{S. aureus} was used as test strain. The active component of the plant extract involved in enhancement of gentamycin's activity had $R_f = 0.72$ on a TLC plate. The spectral data ($^1\text{H NMR, } ^{13}\text{C NMR}$) of this compound revealed that this compound was 5,7,2',4'-tetrahydroxy-8-lavandulylflavanone (sophoraflavanone G), previously isolated from \textit{Sophora exigua}. In the presence of 0.03 μg/mL of sophoraflavanone G the MIC value of gentamycin for \textit{S. aureus} decreased from 32 to 8 μg/mL (a four-fold decrease). These results signify that the ultra-low concentration of sophoraflavanone G potentiates the antimicrobial action of gentamycin suggesting a possible utilization of this compound in combination therapy against \textit{Staphylococcus aureus}.

\textit{Key words:} Antibacterial Activity, Sophoraflavanone G, Synergism