# Supporting Information 

# Effects of Metal Ions and $N$-Donor Ligands with Different Coordination Characters on the Construction of $\boldsymbol{d}^{\mathbf{1 0}}$ Metal-organic Complexes with Selective Photocatalytic Activities 

Guo-Cheng Liu, Nai-Li Chen, Ju-Wen Zhang, Yun Qu, Hong-Yan Lin, and Xin-Jie Gao

Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou, 121000, P. R. China

Table S1. Selected bond lengths ( $\AA$ ) and angles (deg) for compound 1.

|  | 1 |  |  |
| :--- | :--- | :--- | :--- |
| Zn1-O1 | $1.9938(17)$ | Zn1-O3(A) | $1.9988(18)$ |
| Zn1-O1W | $2.1619(19)$ | Zn1-N1 | $2.1293(19)$ |
| Zn1-N2 | $2.166(2)$ |  |  |
| O1-Zn1-O3(A) | $132.63(7)$ | O1-Zn1-O1W | $88.70(7)$ |
| O3(A)-Zn1-O1W | $93.39(7)$ | O1-Zn1-N1 | $111.91(7)$ |
| O3(A)-Zn1-N1 | $115.45(7)$ | O1W-Zn1-N1 | $88.43(7)$ |
| O1-Zn1-N2 | $97.00(7)$ | O3(A)-Zn1-N2 | $92.15(7)$ |
| O1W-Zn1-N2 | $165.96(7)$ | N1-Zn1-N2 | $77.54(7)$ |

Symmetry code: A: $-x+1, y+1 / 2,-z+1 / 2$.

Table S2. Selected bond lengths ( $\AA$ ) and angles (deg) for compound 2.

|  | 2 |  |  |
| :--- | :--- | :--- | :--- |
| Cd1-O1 | $2.2415(16)$ | Cd1-O3(A) | $2.3110(17)$ |
| Cd1-O4(B) | $2.3641(16)$ | Cd1-N2 | $2.3644(18)$ |
| Cd1-N1 | $2.3671(18)$ | Cd1-O4(A) | $2.584(2)$ |
| Cd1-O2 | $2.644(2)$ |  |  |
| O1-Cd1-O3(A) | $129.88(7)$ | O1-Cd1-O4(B) | $83.33(6)$ |
| O3(A)-Cd1-O4(B) | $115.64(6)$ | O1-Cd1-N2 | $145.91(7)$ |
| O3(A)-Cd1-N2 | $84.20(6)$ | O4(B)-Cd1-N2 | $79.83(6)$ |
| O1-Cd1-N1 | $101.35(7)$ | O3(A)-Cd1-N1 | $97.19(6)$ |
| O4(B)-Cd1-N1 | $132.85(7)$ | N2-Cd1-N1 | $70.43(6)$ |
| O1-Cd1-O4(A) | $96.58(6)$ | O3(A)-Cd1-O4(A) | $52.57(5)$ |
| O4(B)-Cd1-O4(A) | $73.58(7)$ | N2-Cd1-O4(A) | $106.64(6)$ |
| N1-Cd1-O4(A) | $149.35(6)$ | O1-Cd1-O2 | $52.43(6)$ |
| O3(A)-Cd1-O2 | $85.51(6)$ | O4(B)-Cd1-O2 | $131.06(6)$ |
| N2-Cd1-O2 | $148.64(6)$ | N1-Cd1-O2 | $81.62(6)$ |
| O4(A)-Cd1-O2 | $90.08(6)$ |  |  |

Symmetry code: A: $x-1, y, z ; \mathrm{B}:-x+3,-y+1,-z+1$.

Table S3. Selected bond lengths ( $\AA$ ) and angles (deg) for compound 3.

|  | 3 |  |  |
| :--- | :--- | :--- | :--- |
| Zn1-O1 | $1.958(3)$ | Zn1 $\cdots \mathrm{O} 2$ | $2.826(3)$ |
| Zn1-N1 | $2.080(2)$ | Zn1-N5(A) | $2.083(2)$ |
| Zn1-O3(B) | $2.290(3)$ | Zn1-O4(B) | $2.108(2)$ |
| O1-Zn1-N5(A) | $94.52(10)$ | O1-Zn1-N1 | $106.53(11)$ |
| N5(A)-Zn1-N1 | $103.70(9)$ | O1-Zn1-O4(B) | $101.51(11)$ |
| N5(A)-Zn1-O4(B) | $98.72(9)$ | N1-Zn1-O4(B) | $142.21(10)$ |
| N5(A)-Zn1-O3(B) | $91.24(9)$ | N1-Zn1-O3(B) | $90.19(9)$ |
| O4(B)-Zn1-O3(B) | $59.04(9)$ | $\mathrm{O} 1-\mathrm{Zn1-O3(B)}$ | $160.40(10)$ |

Symmetry code: A: $x+1 / 2,-y+1 / 2, z-1 / 2 ; \mathrm{B}: x+1, y, z$.

Table S4. Selected bond lengths ( $\AA$ ) and angles (deg) for compound 4.

|  | 4 |  |  |
| :--- | :--- | :--- | :--- |
| Cd1-O3(A) | $2.300(4)$ | Cd1-O4(A) | $2.400(3)$ |
| Cd1-N1 | $2.295(3)$ | Cd1-N5(B) | $2.323(3)$ |
| Cd1-O1 | $2.297(2)$ | Cd1-O2 | $2.428(2)$ |
| N1-Cd1-O1 | $140.39(10)$ | N1-Cd1-O3(A) | $121.95(18)$ |
| O1-Cd1-O3(A) | $95.49(17)$ | N1-Cd1-N5(B) | $97.05(10)$ |
| O1-Cd1-N5(B) | $99.47(9)$ | O3(A)-Cd1-N5(B) | $84.01(11)$ |
| N1-Cd1-O4(A) | $90.56(11)$ | O1-Cd1-O4(A) | $102.66(11)$ |
| O3(A)-Cd1-O4(A) | $54.79(12)$ | N5(B)-Cd1-O4(A) | $134.46(11)$ |
| N1-Cd1-O2 | $90.14(9)$ | O1-Cd1-O2 | $55.42(9)$ |
| O3(A)-Cd1-O2 | $147.42(17)$ | N5(B)-Cd1-O2 | $86.70(9)$ |
| O4(A)-Cd1-O2 | $138.31(11)$ |  |  |

Symmetry code: A: $1+x, y, z$; $:-1 / 2+x, 1 / 2-y, 1 / 2+z$.


Fig. S1. 3-D supramolecular framework of $\mathbf{1}$.


Fig. S2. Supramolecular layer connected by C-H $\cdots \pi$ interactions of $\mathbf{2}$.


Fig. S3. (a) The coordination environment of the $\mathrm{Cd}^{\mathrm{II}}$ ion in compound 4 (A: $1+x, y, z$; B: $-1 / 2+x, 1 / 2-y, 1 / 2+z$ ) (left) and the $\mathrm{Zn}^{\text {II }}$ ion in compound 3 (right); (b) view of the wave-like network in 4; (c) 3-D supramolecular framework derived from layers bridged by hydrogen bonding interactions in $4\left(\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1 \mathrm{~W}=3.068(4) \AA, 148^{\circ}\right.$; $\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WA} \cdots \mathrm{O} 2(\mathrm{C})=2.850(5) \AA, 171^{\circ}$; O2W-H2WB $\cdots \mathrm{O}(\mathrm{C})=2.969(5) \AA, 167^{\circ}$; $\left.\mathrm{C}:-1+x, y, z ; \mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 1 \mathrm{~W}=3.033(4) \AA, 155^{\circ}\right)$.


Fig. S4. Schematic view of the effects of N -donor ligands and metal ions on the L-based coordination polymers 1-4.


Fig. S5. Simulated (black) and experimental (red) PXRD patterns for compounds 1-4, the PXRD patterns of compounds $\mathbf{1 - 4}$ after photocatalytic processes (blue).


Fig. S6. Absorption spectra of the MB solution during the decomposition reaction under UV light irradiation with the use of compounds $\mathbf{1}$ (a), $\mathbf{3}$ (b) and $\mathbf{4}$ (c).

