Zur Elektronenstruktur metallorganischer Komplexe der *f*-Elemente, 81. Berechnung der Normalschwingungen von La $(\eta^5-C_5H_5)_3(NCCH_3)_2$ auf der Basis der Dichtefunktionaltheorie sowie vibronische Kopplungen und Auffindung weiterer rein elektronischer Absorptions- und Lumineszenzübergänge bei [La $(\eta^5-C_5H_5)_3(NCCH_3)_2$:Nd³⁺]

Electronic Structures of Organometallic Complexes of f Elements, 81.

Calculation of the Normal Modes of $La(\eta^5-C_5H_5)_3(NCCH_3)_2$ on the Basis of Density Functional Theory as well as Vibronic Couplings and Identification of Further Purely Electronic Absorption and Luminescence Transitions of $[La(\eta^5-C_5H_5)_3(NCCH_3)_2:Nd^{3+}]$

Hanns-Dieter Amberger und Hauke Reddmann

Institut für Anorganische und Angewandte Chemie der Universität, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

Supporting Information

Abbildung SI-1. Schwingungsbilder von ψ -trigonal-planarem Cp₃*Ln* (wiedergegeben mit Erlaubnis des Autors von Zit. [1]; copyright Wiley-VCH, 2012).

Abbildung SI-2. Vergleich der Tieftemperatur-Schwingungsspektren von $LaCp_3(NCCH_3)_2$ im Bereich 50–450 cm⁻¹. (a) FIR-Spektrum (Polyethylen-Pressling); (b) Raman-Spektrum (Pulver) (wiedergegeben mit Erlaubnis des Autors von Zit. [1]; copyright Wiley-VCH, 2012).

Abbildung SI-3. Vibronische Seitenbanden des rein elektronischen Überganges $1\Gamma_1({}^{3}H_4) \rightarrow 8\Gamma_1({}^{3}P_0)$ von [LaCp₃(NCCH₃)₂:Pr³⁺] (90 K, unorientierter Einkristall). Die Zahlenangaben beziehen sich auf die jeweiligen Wellenzahlendifferenzen zum zugrunde liegenden 0–0-Übergang (wiedergegeben mit Erlaubnis des Autors von Zit. [1]; copyright Wiley-VCH, 2012).

Abbildung SI-4. Vergleich der binären Kombinationsschwingungen im Bereich 2100–2600 nm. (a) 0.3M FeCp₂ in CCl₄, Raumtemperatur, 10 mm Schichtdicke (entnommen aus Zit. [2]); (b) unorientierter [LaCp₃(NCCH₃)₂:Nd³⁺]-Einkristall, ca. 50 K. * bezeichnet den KF-Zustand $5\Gamma_8(^4I_{13/2})$ bei 4161 cm⁻¹.

Korrelation	Schwingungs	Beschreibung	Beschreibung	Abkürzung
	-rasse	gemäß Zit. [4]	gemäß Zit. [5]	im Text
ν_1^{a}	A ₁ ' Ra ^b	Symm.	stretching MCp A ₁ '	$V_{\rm S}$
		Ring-Valenz		
V_2	A ₁ " ia	Symm.	twisting A ₁ "	Tors _s
		Torsion		
V_3	A ₂ ' ia	Symm. Ring-	tilting MCp in plane A ₂ '	Kipp _{ip}
		Kipp-Gleichtakt		
V_4	A_2 " IR	Symm. Deformation	rocking out of plane A ₂ "	πLnCp ₃
V_5	A_2 " IR	Symm. Ring-	tilting MCp out of plane A ₂ "	Kipp _{oop}
		Kipp-Gleichtakt \perp		
V_6	E' IR+Ra	Asymm. Ring-	stretching MCp E'	<i>v</i> as <i>Ln</i> Cp ₃
		M-Valenz		
ν_7	E' IR+Ra	Asymm. Deformation	rocking in plane E'	<i>δLn</i> Cp ₃
V_8	E' IR+Ra	Asymm. Ring-	tilting MCp in plane E'	Kipp _{ip}
		Kipp-Gegentakt		
V9	E'' Ra	Asymm. Torsion	twisting E"	Tors _{as}
V_{10}	E'' Ra	Asymm. Ring-	tilting MCp out of plane E"	Kipp _{oop}
		Kipp-Gegentakt \perp		
v_{11}	A ₁ ' Ra			$v_{\rm s}LnL_2$
V_{12}	A_2 " IR			$v_{\rm as}LnL_2$
V ₁₃	E' IR+Ra			δLnL_2
<i>V</i> ₁₄	E" Ra			$\rho_{\rm r} Ln Cp_3$

Tabelle SI-1. Schwingungsformen und -rassen von ψ -trigonal-bipyramidalem $LnCp_3L_2$ gemäß dem Scheibchenmodell (entnommen aus Zit. [3]).

^a Zählung der v_is gemäß Zit. [1]; ^b Ra = Raman-aktiv, IR = IR-aktiv, ia = inaktiv.

Tabelle SI-2. Vergleich der berechneten Normalschwingungsfrequenzen von LaCp₃ · NCCH₃ (Symmetrie C_3) mit experimentellen Werten (nur nach Größe geordnet, keine Zuordnung) von LaCp₃ · NCCH₃ (IR) und TbCp₃ · NCCH₃ (Raman). Alle Frequenzen in cm⁻¹.

D	0.01	D	י ת	D 1		(10)	(D .)
Ber.	Getolg.	Ber.	Ber. rel.	Ber. rel.	ber. Schwingungsform	$v_{exp.}$ (IR)	$v_{exp.}(Ka)$
Rasse	Rasse	Freq.	IK-	Raman-	(abgekurzt)	R1/11	K1/11
C_3	D_{3h}		Intens.	Intens.			
IA	1A ₁ '	16	0.0	0.0	Me Rot.		
1E	1E'	30	2	2	La–N–C Beug.		39/33
2E	1E"	39	0.9	1.4	<i>V</i> 9		54
2A	$1A_1$ "	49	0.6	0.0	v_2		60/66
3A	$1A_{2}''$	78	5	0.0	V_4	83	85
3E	2E'	94	0.3	0.9	\mathcal{V}_7	100	99/103
4E	2E"	123	1.5	1.6	,		
4A	2A1'	154	1.7	3	V 11	142	139/144
54	14.'	184	0.0	0.07	· 11	179	$\sim 180/173/182$
64	3 \ '	204	0.0	23	<i>V</i> ₃	220 230	105/202
6E	201	204	0.5	10	ν_1	220-250	210/214
JE (E	3E 2E"	204	/	10	V_8	238	210/214
6E	3E	209	10	6	v_{10}	248	229/232
7A	$2A_2$ "	233	1.2	10	V_5	256	243/247
7E	4E'	233	26	4	V_6	267	251/261
8E	4E"	385	0.0	8	N–C–C Beug.	390/393	400/400
9E	5E'	603	0.3	0.1	Ring Def. oop		
8A	$4A_1$ '	606	0.0	0.7	Ring Def. oop		619
10E	5E"	606	0.2	0.5	Ring Def. oop		
9A	2A ₁ "	607	0.1	0.3	Ring Def. oop		
10A	$2A_2'$	719	0.0	0.1	CH(Cp) Beug. oop		
11E	6E'	731	34	7	CH(Cp) Beug. oop	743	750
12E	6E"	733	17	3	CH(Cp) Beug, oop		756
11A	3A1"	741	3	3	CH(Cp) Beug, oop		760
13E	7E'	742	278	3	CH(Cn) Being con	760	770
12A	5A.'	754	15	5	CH(Cn) Being con	795	779
134	34°.	827	03	17	Ring Def in	175	,,,,
14F	8F'	827	0.3	0.6	Ring Def in		
14L	64.'	828	0.5	0.0	Ring Def in		
14A 15E		828	0.0	0.4	Ring Def. ip		
151	/L /A "	820 820	2	0.5	CH(Cn) Roug con		
15A 16E	4A1 9E"	039 920	2 0 2	0.4	CH(Cp) Beug. cop		911
10E 17E	OE'	039	0.5	0.4	CH(Cp) Beug. cop		041
1/E 16A	9E 7 A '	042 045	0.2	0.0	CH(Cp) Beug. cop		
10A	/A ₁	022	0.0	0.01	CH(Cp) Beug. oop	029	019/027
1/A	4A ₂	932	0.1	39	v(C-CN)	928	918/92/
18A	5A2"	996	44	0.6	CH(Cp) Beug. 1p		962
18E	9E"	998	1.5	0.5	CH(Cp) Beug. 1p		
19A	3A ₂ '	1003	1.5	0.1	CH(Cp) Beug. 1p		
19E	10E'	1004	18.8	0.4	CH(Cp) Beug. ip	1014	1012
20E	10E"	1017	1.3	3	$C-CH_3$ Beug.		1031
20A	5A1"	1046	0.0	1.0	CH(Cp) Beug. ip		
21E	11E"	1046	0.2	1.6	CH(Cp) Beug. ip	1054	
22E	12E"	1048	0.1	4	CH(Cp) Beug. ip		1066
21A	8A1'	1050	0.3	6	CH(Cp) Beug. ip	1062	1077
23E	11E'	1119	0.8	0.1	CC(Cp) Pulsation		
22A	9A1'	1120	0.6	158	CC(Cp) Pulsation		1129
24E	13E"	1240	0.0	0.0	CH(Cp) Beug. ip		1234
23A	6A1"	1242	0.0	0.0	CH(Cp) Beug. ip		
25E	12Ė'	1350	1.3	10	v(CC(Cp))		
24A	6A2"	1352	0.9	59	ν (CC(Cp))+ ∂ CH ₂		
26E	14E"	1352	2	7	$\nu(CC(Cn))$	1366	
25A	104.'	1353	0.5	0.5	v(CC(Cp))	1000	
25A 26 M	7 . "	1257	1.5	40	sou		1250
20A	/A2	133/	1.5	49	OCH ₃	1440	1330
27E	15E"	1416	12	8	∂CH ₃	1442	
27A	A_1 "	1418	0.0	1.3	v(CC(Cp))		
28E	16E"	1420	0.1	5	$\nu(CC(Cp))$		
28A	4A ₂ '	1427	0.0	0.1	v(CC(Cp))		
29E	13E'	1429	0.1	6	$\nu(CC(Cp))$		

29A	11A ₁ '	2289	13	1046	v(CN)	2267	2268	
30A	12A ₁ '	2979	0.4	420	$v_{\rm s}({\rm CH}_3)$	2923	2914	
30E	14E'	3053	0.3	71	$v_{\rm as}(\rm CH_3)$	2987		
31A	8A1"	3129	3	15	v(CH(Cp))	3066		
31E	17E"	3129	1.2	14	v(CH(Cp))			
32A	13A ₁ '	3130	0.1	173	v(CH(Cp))		3060	
32E	15E'	3130	0.5	93	v(CH(Cp))		3060	
33A	5A2'	3145	32	2	v(CH(Cp))	3075	3075	
33E	16E'	3145	2	38	v(CH(Cp))		3075	
34A	8A2"	3153	3	6	v(CH(Cp))	3086	3084	
34E	18E"	3154	13	23	v(CH(Cp))	3086	3084	
35E	17E'	3163	2	63	v(CH(Cp))	3093	3093	
35A	14A ₁ '	3164	0.0	438	v(CH(Cp))		3107	

^a Die angegebenen *v*_is der Skelettschwingungen beziehen sich auf Tabelle SI-1; ^b Raumtemperaturdaten über 700 cm⁻¹ wurden Zit. [1] entnommen. Tieftemperaturdaten (kursiv) wurden Zit. [6] entnommen; ^c Raum- und Tieftemperaturdaten (kursiv) wurden Zit. [1, 7] entnommen.

Ber. Rasse	Gefolg. Rasse	Ber. Freq.	Ber. rel. IR-	Ber. rel. Raman-	Ber. Schwingungsform (abgekürzt) ^a	$v_{exp.}$ (IR) RT ^b	<i>E</i> _{exp.} (Ra) RT ^b	E _{exp.} (Ra) RT ^c
1E"	D_{3h}	24	Intens.	Intens.				<u> </u>
		34	2	0.1	V9			
1A"	IA_1	38	3		V_2			
2A"	IA2"	57	3		V_4			
1E'	1E'	92	0.7	0.6	ν_7			125w
1A'	$1A_2'$	190		0.1	V_3			198w
2A'	$1A_1$	212		28	ν_1		243s	243ms
2E"	2E"	213		9	V_{10}			230m
2E'	2E'	215	15	9	ν_8			258ms
3A"	2A ₂ "	228	0.1		V_5			
3E'	3E'	241	30	1.4	V_6			273w
3E"	3E"	603		0.2	Ring Def. oop			
4E'	4E'	604	0.0	0.3	Ring Def. oop			620vw
3A'	$2A_1$ '	605		0.5	Ring Def. oop			625vw
4A"	2A ₁ "	607	0.3		Ring Def. oop			
4A'	$2A_2$ '	728		0.1	CH(Cp) Beug. oop			
5E'	5E'	742	99	7	CH(Cp) Beug. oop			760m
4E''	4E"	743		2	CH(Cp) Beug. oop			
5A"	3A ₁ "	754	0.2		CH(Cp) Beug. oop			
6E'	6E'	754	221	0.6	CH(Cp) Beug. oop	770vs		
5A'	3A ₁ '	765		7	CH(Cp) Beug. oop		777mw	778m
7E'	7E'	827	0.0	0.0	Ring Def. ip			
6A'	$4A_1$	828		2	Ring Def. ip		798w	800w
6A"	4A ₁ "	828	0.1		Ring Def. ip			
5E"	5E"	828		0.3	Ring Def. ip			815w
/A"	3A2"	845	2	0.1	CH(Cp) Beug. oop		0.40	0.42
6E"	6E"	849	1.0	0.1	CH(Cp) Beug. oop		840w	842m
8E	8E	852	1.0	0.2	CH(Cp) Beug. oop			842m
/A'	$5A_1$	857	10	0.1	CH(Cp) Beug. oop	1011		
8A 7E"	4A ₂ 7E"	998	40	0.0	CH(Cp) Beug. ip	1011ms		1010
/E	/E 2 A I	1000		0.0	CH(Cp) Beug. ip			1010w,br
0A 0E'	5A2 0E'	1002	20	0.4	CH(Cp) Beug. ip			1020
9E 0A"	9E 5 A "	1005	20	0.5	CH(Cp) Beug. ip			
7A 10E'	10E'	1047	0.1	03	CH(Cp) Beig. ip			
10L 8F"	10L 8F"	1048	0.0	0.3 5	CH(Cp) Beig in		1065m	1065m
9Δ'	64.'	1049		8	CH(Cp) Beig in		1005111	1005m 1075w sh
11F'	11F'	1119	12	02	CC(Cn) Pulsation			1117s
10A'	7A.'	1120	1.2	148	CC(Cp) Pulsation		1126vs	1125vs
9E"	9E"	1241		0.0	CH(Cn) Being in		112015	1233vw
10A"	6A1"	1243	0.0	0.0	CH(Cp) Beug. ip			1252vw
11A'	8A1'	1353		18	V(CC(Cn))			1350s
12E'	12E'	1353	2	4	v(CC(Cp))		1356m	
10E"	10E"	1353		8	V(CC(Cp))			13578
11A"	5A2"	1356	1.0	0	v(CC(Cn))			10070
12A"	7A,"	1419	0.1		V(CC(Cp))	1437w		
11F"	11F"	1421	0.1	6	v(CC(Cp))	11071	1440w	1436m
12 <u>Δ'</u>	4 4 .	1426		01	V(CC(Cp))		1440	145011
12/1 13E'	13E'	1420	0.2	6	V(CC(Cp))			1442m
124"	13E 9A "	2127	0.2	0	V(CC(Cp))			1442111
13A 14E'	0A1 14E'	2127	4	12	V(CH(Cp))			
14E 12A	14E	2120	1.4	12	V(CH(Cp))			20(9
13A 12E"	9A ₁ 10E"	3128		224	v(CH(Cp))			3008m
12E"	12E"	3128	17	97	V(CH(Cp))	2000		
14A"	6A2"	3143	1/	10	ν (CH(Cp))	3080m	2070	2076
13E"	13E"	3143		48	v(CH(Cp))		30/9m	30/6w
14A'	5A2'	3153		57	v(CH(Cp))		3094s	3092m
15E'	15E'	3154	9	18	v(CH(Cp))	3102w		
16E'	16E'	3163	1.4	64	v(CH(Cp))			
15A'	$10A_{1}'$	3164		442	v(CH(Cp))		3104s	3103m

Tabelle SI-3. Vergleich der berechneten Normalschwingungsfrequenzen von $LaCp_3$ mit experimentellen Werten (nur nach Größe geordnet, keine Zuordnung). Alle Frequenzen in cm⁻¹.

^a Die angegebenen ν_i s der Skelettschwingungen beziehen sich auf Tabelle SI-1; ^b entnommen aus Zit. [8]; ^c entnommen aus Zit. [9].

Ber Rasse	Ber	Ber rel	Ber rel	Ber Schwingungsform
D_2	Freq.	IR-Intens	Raman-Intens	(abgekürzt) ^a
1F	13	0.01	0.05	
1L 1A.	15. 34	0.01	0.00	V9
1 1	77. 17	0.00	0.00	
1A ₂ 2E	47.	0.40	0.00	V_4
2E 2 A	92.	0.00	1.42	
2A ₂	117.	0.05	0.00	V_3
SE	130.	0.16	11.01	v_{10}
$3A_2$	147.	10.98	0.00	V_5
4E	150.	9.32	13.10	ν_8
$2A_1$	159.	0.00	22.97	ν_1
5E	175.	6.98	0.36	V_6
6E	372.	0.01	0.25	Ring Def. oop
$3A_1$	375.	0.00	0.17	Ring Def. oop
7E	395.	0.04	0.17	Ring Def. oop
$4A_1$	399. 5 99	0.00	0.29	Ring Def. oop
8E	588.	0.09	1.16	Ring Def. ip
$5A_1$	589.	0.00	1.34	Ring Def. ip
9E	591.	0.02	1.49	Ring Def. ip
6A1	592.	0.00	4.98	Ring Def. ip
4A ₂	669.	0.00	0.00	Ring Def. oop
10E	670. 746	0.00	0.29	Ring Def. oop
	/46.	200.18	1.42	CH Beug. oop
/A ₁	/5/.	0.00	0.11	CH Beug. cop
3A ₂	696. 001	0.01	0.00	CH Beug, cop
12E	901.	0.07	0.18	CH Beug, cop
0A ₂ 13E	908.	0.30	0.00	CH Beug, cop
13E 14E	912.	2.01	0.83	CC Pulsation
14E 8A	908. 073	22.00	172 35	CC Pulsation
74.	990	0.00	0.00	Ring Def in
15E	990	0.01	0.00	Ring Def. ip
94.	1002	0.00	0.14	CH Beug oon
16F	1002.	0.00	0.02	CH Beug oon
17E	1007.	0.79	0.03	CH Beug, oop
10A1	1012	0.00	0.38	CH Beug. oop
8A2	1017.	0.31	0.00	CH Beug, oop+CH Beug, ip
18E	1018.	0.06	0.46	CH Beug. oop+CH Beug. ip
19E	1021.	0.74	0.57	CH Beug. ip
9A ₂	1021.	0.65	0.00	CH Beug. ip
$10\tilde{A}_2$	1025.	2.09	0.00	CH Beug. ip+CH Beug. oop
20E	1028.	0.36	0.50	CH Beug. ip+CH Beug. oop
11A ₂	1160.	0.78	0.00	CH Beug. ip
21E	1160.	0.74	0.00	CH Beug. ip
22E	1169.	0.35	1.54	CH Beug. ip
11A ₁	1170.	0.00	1.73	CH Beug. ip
23E	1170.	0.41	3.92	CH Beug. ip
12A ₁	1172.	0.00	7.05	CH Beug. ip
12A ₂	1324.	0.13	0.00	V(CC)
24E	1326.	0.54	0.50	V(CC)
25E	1340.	0.00	0.00	CH Beug. ip
13A ₁	1342.	0.00	0.00	CH Beug. ip
13A ₂	1454.	11.21	0.00	<i>v</i> (CC)
14A ₂	1455.	71.37	0.00	<i>v</i> (CC)
26E	1457.	33.05	2.83	v(CC)
27E	1458.	3.40	4.31	V(CC)
28E	1550.	1.77	3.35	V(CC)
14A ₁	1550.	0.00	0.13	V(CC)
29E	1550.	0.11	6.17	V(CC)
15A ₁	1553.	0.00	11.37	V(CC)
15A ₂	3101.	0.42	0.00	v(CH)

Tabelle SI-4. Berechneten Normalschwingungsfrequenzen des fiktiven Modellkomplexes $[La(C_6H_6)_3]^{3+}$ unter Annahme molekularer D_3 -Symmetrie. Alle Frequenzen in cm⁻¹.

30E	3101.	0.52	1.16	<i>v</i> (CH)	
16A ₁	3106.	0.00	7.05	<i>v</i> (CH)	
31E	3107.	0.00	48.99	v(CH)	
32E	3107.	0.04	52.89	<i>v</i> (CH)	
17A ₁	3108.	0.00	145.53	<i>v</i> (CH)	
16A ₂	3115.	5.08	0.00	v(CH)	
33E	3115.	1.97	39.72	<i>v</i> (CH)	
17A ₂	3116.	93.38	0.00	v(CH)	
34E	3117.	15.62	16.53	v(CH)	
35E	3121.	19.70	37.77	<i>v</i> (CH)	
18A ₁	3122.	0.00	614.97	v(CH)	

 $18A_1$ 3122.0.00614.97 ν (CH)a Die angegebenen ν_{IS} der Skelettschwingungen beziehen sich auf Tabelle SI-1.

Tabelle SI-5. Vergleich des berechneten und des experimentell abgeleiteten KF-Aufspaltungsmusters von $Cp_3La_{0.8}Nd_{0.2}(NCCH_3)_2$. Neu gefundene KF-Zustände in fett. Alle Werte in cm⁻¹.

Multiplett	KF-Z	Zustand	ber.	exp.	Multiplett	KF-Z	Zustand	ber.	exp.
-			Energie	Energie				Energie	Energie
${}^{4}I_{9/2}{}^{a}$	$1\Gamma_7^{b}$	$\pm 5/2^{c}$	0	0	$^{2}G1_{7/2}$	$19\Gamma_7$	$\pm 5/2$	17373	(17343) ^e
${}^{4}I_{9/2}$	$1\Gamma_9$	$\pm 3/2$	45	50 ^d	$^{2}G1_{7/2}$	21Γ9	$\pm 3/2$	17401	17361
${}^{4}I_{9/2}$	$1\Gamma_8$	$\pm 1/2$	359	353	$^{2}G1_{7/2}$	$19\Gamma_8$	$\pm 1/2$	17440	17450
${}^{4}I_{9/2}$	$2\Gamma_9$	$\pm 9/2$	397	408^{d}	$^{2}G1_{7/2}$	$20\Gamma_7$	$\pm 7/2$	17445	(17504) ^e
${}^{4}I_{9/2}$	$2\Gamma_7$	$\pm 7/2$	910	895^{d}	${}^{4}G_{7/2}$	$21\Gamma_7$	$\pm 5/2$	18746	(18717) ^e
${}^{4}I_{11/2}$	$2\Gamma_8$	$\pm 1/2$	2123		${}^{4}G_{7/2}$	22Γ ₉	$\pm 3/2$	18932	18879
${}^{4}I_{11/2}$	$3\Gamma_7$	$\pm 5/2$	2130		${}^{4}G_{7/2}$	$22\Gamma_7$	$\pm 7/2$	18985	18976 ^e
${}^{4}I_{11/2}$	3Г9	$\pm 3/2$	2138		${}^{4}G_{7/2}$	$20\Gamma_8$	$\pm 1/2$	19055	19139
${}^{4}I_{11/2}$	$3\Gamma_8$	$\pm 11/2$	2209		${}^{2}K_{13/2}$	$21\Gamma_8$	$\pm 1/2$	19236	19275
${}^{4}I_{11/2}$	$4\Gamma_7$	$\pm 7/2$	2505		${}^{4}G_{9/2}$	$23\Gamma_7$	$\pm 5/2$	19319	(19313) ^e
${}^{4}I_{11/2}$	$4\Gamma_9$	$\pm 9/2$	2543		${}^{2}K_{13/2}$	23Γ ₉	$\pm 3/2$	19349	19380
${}^{4}I_{13/2}$	$5\Gamma_7$	$\pm 5/2$	4036	4039	⁴ G _{9/2}	$24\Gamma_7$	$\pm 7/2$	19415	
${}^{4}I_{13/2}$	$5\Gamma_9$	$\pm 3/2$	4062	4057	⁴ G _{9/2}	$24\Gamma_9$	$\pm 3/2$	19437	19424
${}^{4}I_{13/2}$	$4\Gamma_8$	$\pm 13/2$	4103	4137	⁴ G _{9/2}	$22\Gamma_8$	$\pm 1/2$	19470	19475
⁴ I _{13/2}	$5\Gamma_8$	$\pm 1/2$	4124	4161	⁴ G _{9/2}	25Γ9	$\pm 9/2$	19603	19604
${}^{4}I_{13/2}$	$6\Gamma_7$	$\pm 7/2$	4400	4409	${}^{2}K_{13/2}$	$23\Gamma_8$	$\pm 13/2$	19643	19654
⁴ I _{13/2}	6Г9	$\pm 9/2$	4516	4505	${}^{2}K_{13/2}$	$25\Gamma_7$	$\pm 5/2$	19727	(19712) ^e
⁴ I _{13/2}	$6\Gamma_8$	$\pm 11/2$	4576	4580	² K _{13/2}	$24\Gamma_8$	$\pm 11/2$	19838	19838
⁴ I _{15/2}	$7\Gamma_7$	$\pm 5/2$	5789		² K _{13/2}	$26\Gamma_7$	$\pm 7/2$	19859	
⁴ I _{15/2}	$7\Gamma_9$	$\pm 3/2$	5887		${}^{2}K_{13/2}$	26Γ ₉	$\pm 9/2$	19930	19943
⁴ I _{15/2}	$8\Gamma_9$	$\pm 15/2$	6104		² G1 _{9/2}	$27\Gamma_7$	$\pm 5/2$	20774	20708 ^e
⁴ I _{15/2}	$7\Gamma_8$	$\pm 1/2$	6141		² D1 _{3/2}	27Γ ₉	$\pm 3/2$	20867	20881
⁴ I _{15/2}	$8\Gamma_7$	$\pm 7/2$	6632		² G1 _{9/2}	28Г9	$\pm 3/2$	20937	20982
*I _{15/2}	9Г9	$\pm 9/2$	6719		² G1 _{9/2}	$28\Gamma_7$	$\pm 7/2$	21008	
*I _{15/2}	$8\Gamma_8$	$\pm 11/2$	6764		² D1 _{3/2}	$25\Gamma_8$	$\pm 1/2$	21018	21022
⁴ I _{15/2}	$9\Gamma_8$	$\pm 13/2$	6912	11000	² G1 _{9/2}	29Γ ₉	±9/2	21067	21071
⁴ F _{3/2}	1019	$\pm 3/2$	11411	11388	² G1	2917	$\pm 5/2$	21122	01114
F _{3/2}	101 8	$\pm 1/2$	11577	11609	-G1 _{9/2}	261 8	$\pm 1/2$	21149	21146
⁴ F _{5/2}	91 [°] 7	$\pm 5/2$	12357	12365	⁻ K _{15/2}	301%	$\pm 3/2$	21295	21286
² F _{5/2}	1119	$\pm 3/2$	12503	12488	² G _{11/2}	3017	±1/2	21350	(21314)
HZ _{9/2}	101 7	±1/2	12515	12526	⁴ C	2/18	$\pm 1/2$	21408	21414
F _{5/2}	111 8	$\pm 1/2$	12595	12660	⁴ C	3119	$\pm 3/2$	21491	21609
² U2	1219	±9/2	12037	12000	⁴ C	281 8	$\pm 11/2$	21599	21008
H29/2 2112	121 8	$\pm 1/2$	12/38	12704	4C	321 ₉	±9/2	21627	21037
² U2	1319	±3/2	12908	12904	² V	291 8 21 E	±1/2	21020	21074
П2 _{9/2} 4	1117	±3/2	12908	12227°	² <i>V</i>	311 ₇ 22E	±5/2	21034	21750
Γ _{7/2} 4	145	±1/2	13355	12/22	² <i>V</i>	331 9 20E	±15/2	21700	21739
4°C	141 9 155	±3/2 ±2/2	13621	13433	² K	201 8	±13/2	21020	21/9/
4s	1319	±3/2 ±1/2	13632	13032	^K 15/2 ² K	321 7 245	±1/2	21094	21881
⁴ F	1318	⊥1/2 +5/2	13647	15052	² K	341 9 31 F	<u>⊥9/∠</u> +11/2	21750	21001
⁴ Fara	1317 140	$\pm 3/2$ +1/2	13683	13724	² P	311 8 32F	$\pm 11/2$ +1/2	21900	21905
⁴ F	141 8 16	 +0/2	14663	12724	² D1	321 8 33F	_1/2 +5/2	23133	23143
⁴ F	1019	⊥9/2 +1/2	14005	14055	² D1 _{5/2}	3517 355	±3/2 +2/2	23707	
⁴ F	1JI 8 1/1	$\pm 1/2$ $\pm 7/2$	14837	17/42	² D1	3319	$\pm 3/2$ $\pm 1/2$	23055	
⁴ Fara	1417 17F	+2/2	14840	14858	² P ₂ ²	36F	+2/2	26003	
⁴ Far	1/19 15	+5/2	14871	17030	² P ₂ ²	301 9 34F	+1/2	26059	
2 H22	1517 16Г-	+11/2	15946	15928	4 Dava	341 8 35E	$\pm 1/2$ +1/2	20055	
$^{2}\text{H2}_{11/2}$	16Γ ₈	+7/2	15969	15720	4 D2/2	37E	+3/2	27667	
$^{2}\text{H2}_{11/2}$	18C	+3/2	15993	15972	4Dep	34F~	+5/2	27810	
${}^{2}\text{H2}_{11/2}$	101 9 17 Г -	+5/2	16068	13714	4Dep	36E	+1/2	27819	
$^{2}\text{H2}_{11/2}$	17L7 17C-	+1/2	16071	16063	4Dep	38L	+3/2	28016	
$^{2}\text{H}_{211/2}$	19E	+9/2	16112	16139	4D10	37E	$\pm 3/2$ $\pm 1/2$	28265	
${}^{4}G_{5/2}$	1919 18 Г -	+5/2	16881	$(16894)^{\rm f}$	² I ₁₁₂	35E-	+7/2	28821	
${}^{4}G_{5/2}$	20E	+3/2	16882	(16799)	2 III/2	39E	+3/2	28877	
${}^{4}G_{5/2}$	18C.	+1/2	17050	(16932)	² I _{11/2}	36F-	+5/2	28930	
G 5/2	101 8	<u> </u>	1,000	(10)02)	-11/2	5017	-512	_0/00	

^a Dominierendes, zugrundeliegendes Multiplett; ^b hier wird die Bethesche Γ -Symbolik für die Doppelgruppe D_{3h} ' verwendet. Die einzelnen irreduziblen Darstellungen Γ_i sind (bei

festgehaltenem i) nach steigender Energie geordnet; ^c die KF-Zustände werden hier durch ihre dominierenden Quantenzahlen $\pm M_J$ grob charakterisiert; ^d dem "heißen" Übergang ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ entnommen; ^e aus "heißen" Übergängen des 50 K-Spektrums gefolgert; ^f eingeklammerte Werte wurden bei der Anpassung nicht berücksichtigt.

Tabelle SI-6. Vergleich der Parametersätze von $Cp_3La_{0.8}Nd_{0.2}(NCCH_3)_2$ (neuer und alter [10] Satz) sowie $LaCl_3:Nd^{3+}$. Alle Werte in cm⁻¹.

Parameter	neu	alt	LaCl ₃ :Nd ^{3+ a}
F^2	70077	70294	71866
F^4	52263	52083	52132
F^6	35094	35251	35473
$\zeta_{ m 4f}$	875.5	875	880
alpha	21.4	[21.35] ^b	22.08
beta	[-680.22]	[-680.22]	-650
gamma	[1586]	[1586]	1586
T^2	[377]	[377]	377
T^3	[40]	[40]	40
T^4	[63]	[63]	63
T^6	[-292]	[-292]	-292
T^7	[358]	[358]	358
T^8	[354]	[354]	354
\mathbf{M}^{0}	[1.97]	[1.97]	1.97
M^2	[1.1]	[1.1]	1.1
\mathbf{M}^4	[0.75]	[0.75]	0.75
\mathbf{P}^2	[255]	[255]	255
\mathbf{P}^4	[191]	[191]	191
P^6	[127]	[127]	127
\mathbf{B}_{0}^{2}	-619	-594	163
\mathbf{B}_{0}^{4}	1890	1868	-336
\mathbf{B}_0^6	1545	1528	-713
\mathbf{B}_6^6	-2036	-2032	462
$N_v/\sqrt{4\pi}$	1138	1128	326
$\sigma(n)^{c}$	30(61)	32(53)	8.1(101)

^a Entnommen aus Zit. [11]; ^b Werte in eckigen Klammern wurden während der

Anpassungsprozeduren auf den Werten von Cp₃Nd · MeTHF [12] konstant gehalten; ^c

reduzierte r. m. s.-Abweichung (Anzahl der angepassten KF-Zustände in runden Klammern).

Literatur

- [1] H.-D. Amberger, H. Reddmann, Z. Anorg. Allg. Chem. 2012, 639, 134–141.
- [2] A. F. Reid, D. E. Scaife, P. C. Wailes, *Spectrochim. Acta* **1964**, *20*, 1257–1268.
- [3] E. R. Lippincott, R. D. Nelson, J. Chem. Phys. 1953, 21, 1307–1308.
- [4] H. P. Fritz, Habilitationsschrift, München **1962**, und dort angegebene Literaturzitate.
- [5] V. T. Aleksanyan, G. K. Borisov, I. A. Garbuzova, G. G. Devyatykh, J. Organomet. Chem. 1977, 131, 251–255.
- [6] H.-D. Amberger, H. Reddmann, H. Schultze, S. Jank, B. Kanellakopulos, C. Apostolidis, *Spectrochim. Acta, Part A* 2003, *59*, 2527–2539.
- [7] H.-D. Amberger, H. Schultze, *Spectrochim. Acta, Part A* **1987**, *43*, 1301–1306.
- [8] P. L. Stanghellini, E. Diana, E. Boccaleri, R. J. Rossetti, J. Organomet. Chem. 2000, 593–594, 36–43.
- [9] V. T. Aleksanyan, G. K. Borisov, G. G. Devyatykh, B. F. Gaechter, J. A. Koningstein, B.
 E. Schneider, *J. Raman Spectrosc.* 1974, *2*, 345–349.
- [10] H. Reddmann, H.-D. Amberger, B. Kanellakopulos, C. Apostolidis, J. Rebizant, N. M.
 Edelstein, J. Organomet. Chem. 2001, 622, 19–32.
- [11] H. M. Crosswhite, H. Crosswhite, F.W. Kaseta, R. Sarup, J. Chem. Phys. 1976, 64, 1981– 1985.
- [12] H.-D. Amberger, H. Schultze, N. M. Edelstein, *Spectrochim. Acta, Part A* 1986, 42, 657–667.