Oxidation Reactions Catalyzed by Polyoxomolybdate Salts

Bo Zhang,^a Su Li,^a Alexander Pöthig,^a Mirza Cokoja,^a Shu-Liang Zang,^{b, c}

Wolfgang A. Herrmann^{a,*} and Fritz E. Kühn^{a,*}

- ^a Chair of Inorganic Chemistry/Molecular Catalysis, Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Straβe 1, D-85747 Garching bei München, Germany. Tel: +49 89 289 13081, Fax: +49 89 289 13473. E-mail: wolfgangherrmann@ch.tum.de and fritz.kuehn@ch.tum.de
- ^b School of Chemical and Materials Science, Liaoning Shihua University, Dandong Road, No.1, 113001 Fushun, P. R. China
- ^c Institute of Rare and Scattered Elements Chemistry, Liaoning University, Chongshan Middle Road, No. 66, 110036 Shenyang, P. R. China

Supporting Information

Table of contents

Cryst	allographic data of compounds 1, 3 and 4	2
Expe	rimental details, bond distances and angles of compounds 1, 3 and 4	2
2.1.	Experimental details, bond distances and angles of 1	2
2.2.	Experimental details, bond distances and angles of 3	5
2.3.	Experimental details, bond distances and angles of 4	7
2.4.	Hirshfeld Surface Analysis	9
Char	acterization data of sulfoxides	10
	Cryst Expe 2.1. 2.2. 2.3. 2.4. Char	Crystallographic data of compounds 1, 3 and 4 Experimental details, bond distances and angles of compounds 1, 3 and 4 2.1. Experimental details, bond distances and angles of 1 2.2. Experimental details, bond distances and angles of 3 2.3. Experimental details, bond distances and angles of 4 2.4. Hirshfeld Surface Analysis Characterization data of sulfoxides

1. Crystallographic data of compounds 1, 3 and 4

	1	3	4
Formula	C ₃₂ H ₇₂ PO ₁₉ Mo ₆	$C_{16}H_{30}N_4O_{19}Mo_6$	C ₁₈ H ₃₄ N ₄ O ₁₉ Mo ₆
<i>M</i> _r	1398.48	1158.08	1186.13
Cryst. size, mm ³	$0.25\times0.26\times0.47$	$0.10\times0.20\times0.22$	$0.24 \times 0.41 \times 0.46$
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	P2 ₁ /c	P2 ₁ /n
a, Å	16.0547(3)	8.5458(16)	11.0074(2)
b, Å	16.0680(3)	17.085(3)	10.7827(2)
<i>c</i> , Å	19.7281(4)	11.075(2)	13.5900(3)
a, deg	90	90	90
β, deg	106.2476(7)	108.937(8)	91.045(1)
γ, deg	90	90	90
V, Å ³	4885.94(16)	1529.5(5)	1612.72(5)
Z	4	2	2
D_{calcd} , g cm ⁻³	1.901	2.515	2.443
μ (Mo K_{α}), mm ⁻¹	1.625	2.471	2.347
<i>F</i> (000), e	2792	1116	1148
hkl range	–19 ≤ <i>h</i> ≤ +19	–10 ≤ <i>h</i> ≤ +10	–13 ≤ <i>h</i> ≤ +13
	–19 ≤ <i>k</i> ≤ +19	$-20 \le k \le +20$	–13 ≤ <i>k</i> ≤ +13
	<i>–</i> 21 ≤ / ≤ +23	–13 ≤ / ≤ +13	–16 ≤ <i>l</i> ≤ +16
$\theta_{min/max}$, deg	1.8, 25.4	2.4, 25.6	2.4, 25.5
Refl. measured	15516	48445	40353
Refl. unique	4475	2836	2928
R _{int}	0.017	0.048	0.82
Param. refined	414	208	218
R(F)/wR(F ²) ^a (all	0.0177, 0.0370	0.0196, 0.0395	0.0264, 0.0660
reflexions)			
GoF (<i>F</i> ²) ^b	1.05	1.06	1.16
$\Delta \rho_{\text{fin}}$ (max/min),	0.34, -0.34	0.34, -0.27	1.36, -0.58
ρ Å ⁻³			

Table S1. Crystallographic details of 1, 3 and 4.

^a $R_1 = ||F_0| - |F_c|| / \Sigma |F_0|$, $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$, $w = [\sigma^2 (F_0^2) + (AP)^2 + BP]^{-1}$, where $P = (Max (F_0^2, 0) + 2F_c^2)/3$; ^b GoF = $[\Sigma w (F_0^2 - F_c^2)^2 / (n_{obs} - n_{param})]^{1/2}$

2. Experimental details, bond distances and angles of compounds 1, 3 and 4

2.1. Experimental details, bond distances and angles of 1

 $C_{32}H_{72}PMo_6O_{19}$ (1): a clear pale yellow fragment-like specimen of $C_{32}H_{72}Mo_6O_{19}P_2$, approximate dimensions 0.252 mm x 0.260 mm x 0.469 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 2592 frames were collected. The total exposure time was 7.20 h. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 42081 reflections to a maximum θ angle of 25.35° (0.83 Å resolution). The final cell constants of a = 16.0547(3) Å, b = 16.0680(3) Å, c = 19.7281(4) Å, β = 106.2476(7)°, volume = 4885.94(16) Å³, are based upon the refinement of the XYZ-centroids of 216 reflections above 20 σ (I) with 3.605° < 2 θ < 66.77°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.909. Bond distances and angles of **1** are shown in Table S2 and Table S3.

Mo1	-02	1.6779(18)	C14	-C15	1.518(3)
Mo1	-07	1.9284(13)	C15	-C16	1.520(3)
Mo1	-09	1.9298(13)	C1	-H1B	0.93(2)
Mo1	-07_a	1.9284(13)	C1	-H1A	0.94(2)
Mo1	-O9_a	1.9298(13)	C2	-H2A	0.95(3)
Mo1	-01	2.3177(16)	C1	-H2B	0.90(3)
Mo2	-01	2.3135(16)	C3	-H3A	0.99(3)
Mo2	-O11_a	1.9308(13)	C3	-H3B	0.91(2)
Mo2	-O8_a	1.9269(13)	C4	-H4A	0.97(3)
Mo2	-011	1.9308(13)	C4	-H4B	0.95(3)
Mo2	-O3	1.6800(19)	C4	-H4C	0.93(3)
Mo2	-08	1.9269(13)	C5	-H5A	0.95(2)
Mo3	-04	1.6833(13)	C5	-H5B	0.92(2)
Mo3	-09	1.9287(13)	C6	-H6A	0.96(2)
Mo3	-O10	2.0020(13)	C6	-H6B	0.94(2)
Mo3	-011	1.9227(13)	C7	-H7B	0.98(2)
Mo3	-01	2.3188(2)	C7	-H7A	0.94(2)
Mo3	-O6_a	1.8610(13)	C8	-H8A	0.99(3)
Mo4	-06	1.9902(13)	C8	-H8B	0.92(3)
Mo4	-08	1.9193(13)	C8	-H8C	0.94(3)
Mo4	-O10	1.8681(14)	C9	-H9A	0.92(2)
Mo4	-07	1.9282(13)	C9	-H9B	0.89(2)
Mo4	-01	2.3177(2)	C10	-H10A	0.91(2)
Mo4	-05	1.6879(14)	C10	-H10B	0.92(2)
P1	-C1	1.804(2)	C11	-H11A	0.95(2)
P1	-C5	1.801(2)	C11	-H11B	0.93(2)
P1	-C9	1.803(2)	C12	-H12A	0.96(2)
P1	-C13	1.800(2)	C12	-H12B	0.92(2)
C1	-C2	1.528(3)	C12	-H12C	0.90(3)
C2	-C3	1.517(3)	C13	-H13B	0.92(2)
C3	-C4	1.514(4)	C13	-H13A	0.92(2)
C5	-C6	1.528(3)	C14	-H14A	0.94(2)
C6	-C7	1.524(3)	C14	-H14B	0.94(2)
C7	-C8	1.518(3)	C15	-H15B	0.96(2)
C9	-C10	1.527(3)	C15	-H15A	0.93(2)
C10	-C11	1.518(3)	C16	-H16C	0.92(3)
C11	-C12	1.519(3)	C16	-H16A	0.94(2)
C13	-C14	1.528(3)	C16	-H16B	0.95(3)

Table S2. Bond distances (Å) in compound 1.

 Table S3. Bond angles (°) in compound 1.

02	-Mo1	-07_a	103.17(4)	O5	-Mo4	-06	102.04(6)
O2	-Mo1	-O9_a	103.42(4)	07	-Mo4	-08	152.87(6)
07	-Mo1	-09	86.94(6)	O6	-Mo4	-08	84.47(5)
07	-Mo1	-07_a	153.67(6)	O6	-Mo4	-010	153.85(6)
07	-Mo1	-O9_a	87.00(6)	C1	-P1	-C13	105.02(10)

07_a 09	-Mo1 -Mo1	-O9 -O9 a	87.00(6) 153.16(6)	C5 C5	-P1 -P1	-C9 -C13	110.02(10) 112.35(10)
07 a	-Mo1	-09 a	86 94(6)	C9	-P1	-C13	108 48(9)
01	-Mo1	-02	180,00(1)	C1	-P1	-C5	108.37(9)
01	-Mo1	-07	76 83(4)	C1	-P1	-09	112 55(9)
01	-Mo1	-09	76 58(4)	Mo1	-01	-Mo2	180 00(1)
01	-Mo1	-07 -2	76.83(4)	Mo1	-01	-Mo2	00.00(1)
01	-Mo1	-07_a	76.58(4)	Mo1	-01	-1000 Mo4	80.02(4)
01	-IVIO I Mo 1	-09_a	102 17(4)	Mo1	-01	-IVIU4	09.92(4)
02		-07	103.17(4)	IVIO I Mo2	-01		90.13(4)
02		-09	103.42(4)	IVIO3	-01	-1VIO3_a	179.74(8)
08	-1002	-08_a	152.87(6)	IVIO1	-01	-1VIO4_a	89.92(4)
08	-IVIO2	-011_a	87.00(6)	Mo2	-01	-1/103	89.87(4)
08_a	-1/102	-011	87.00(6)	MO2	-01	-1/104	90.08(4)
011	-1/102	-011_a	153.71(6)	MO2	-01	-1003_a	89.87(4)
08_a	-Mo2	-011_a	86.89(6)	Mo2	-01	-Mo4_a	90.08(4)
01	-Mo2	-011_a	76.86(4)	Mo3	-01	-M04	90.20(1)
03	-Mo2	-08	103.56(4)	Mo4	-01	-Mo4_a	179.85(8)
03	-Mo2	-011	103.14(4)	Mo3	-01	-Mo4_a	89.81(1)
01	-Mo2	-03	180.00(1)	Mo3_a	-01	-Mo4	89.81(1)
01	-Mo2	-08	76.44(4)	Mo3_a	-01	-Mo4_a	90.20(1)
01	-Mo2	-011	76.86(4)	Mo3_a	-06	-Mo4	116.35(7)
01	-Mo2	-O8_a	76.44(4)	Mo1	-07	-Mo4	116.28(7)
O3	-Mo2	-O8_a	103.56(4)	Mo2	-08	-Mo4	116.86(7)
O3	-Mo2	-O11_a	103.14(4)	Mo1	-09	-Mo3	116.57(7)
O8	-Mo2	-011	86.89(6)	Mo3	-010	-Mo4	116.07(7)
O1	-Mo3	-04	176.62(5)	Mo2	-011	-Mo3	116.22(7)
01	-Mo3	-09	76.57(6)	P1	-C1	-C2	118.17(15)
01	-Mo3	-010	75.61(4)	C1	-C2	-C3	111.72(19)
O10	-Mo3	-011	84.58(5)	C2	-C3	-C4	113.6(2)
06 a	-Mo3	-010	153.70(6)	P1	-C5	-C6	115.66(14)
06 a	-Mo3	-011	90.42(6)	C5	-C6	-C7	111.66(17)
04	-Mo3	-011	102.94(6)	C6	-C7	-C8	111.34(18)
04	-Mo3	-06 a	105.28(6)	P1	-C9	-C10	116.21(14)
09	-Mo3	-010	83 81(5)	C9	-C10	-C11	111 75(17)
01	-Mo3	-011	76 88(6)	C10	-C11	-C12	112 81(17)
01	-Mo3	-06 a	78 10(4)	P1	-C13	-C14	118 12(15)
04	-Mo3	-09	103 25(6)	C13	-C.14	-C15	110.66(17)
04	-Mo3	-010	101.00(6)	C14	-C15	-C16	112 63(19)
04	-Mo3	-010	152 92(6)		-010	-010 -H1A	105 0(13)
06.3	-Mo3	-011	80.26(6)	1	-01		103.0(13) 108.7(14)
00_0	-Mo3	-03	76 84(6)	C2	-01		100.7(14) 110 7(14)
01	-Mo4	-07	177 39(5)	D1	-01		100.7(14)
01	-10104 Mo4	-05	7574(4)		-01		105.1(14)
01	-IVI04	-00	75.74(4)		-01		103(2)
07	-IVI04	-010	09.21(0)	03	-02	-nza	111.4(13)
06	-IVIO4	-010	09.99(0) 101 66(6)	С3 Цал	-02	-U7D	109.4(17)
05		-07	101.00(0)		-02	-U2D	100(2)
05	-IVIO4	-08	104.82(6)		-62	-HZB	109.0(17)
05	-IVIO4	-010	104.09(6)	01	-02	-HZA	108.9(16)
06	-IVI04	-07	84.40(5)	C4	-03	-H3A	109.3(16)
01	-M04	-08	76.47(6)	C2	-C3	-H3A	107.6(15)
01	-Mo4	-010	78.11(4)	C2	-C3	-H3B	112.2(15)
H3A	-C3	-H3B	104(2)	C9	-C10	-H10B	110.3(16)
C4	-C3	-H3B	109.4(16)	C11	-C10	-H10B	111.0(15)
C3	-C4	-H4B	109.7(19)	C9	-C10	-H10A	109.7(16)
C3	-C4	-H4A	110.2(17)	C10	-C11	-H11A	106.9(15)
H4A	-C4	-H4C	111(3)	C12	-C11	-H11B	108.2(15)
C3	-C4	-H4C	108.8(19)	H11A	-C11	-H11B	110(2)
H4A	-C4	-H4B	110(2) ´	C10	-C11	-H11B	108.1(14)
H4B	-C4	-H4C	108(̀3)	C12	-C11	-H11A	110.7(Ì15)
P1	-C5	-H5Ă	108.3(13)	C11	-C12	-H12A	109.8(14)
P1	-C5	-H5B	106.7(14)	H12A	-C12	-H12B	105(2)
Cé	-C5	-H5A	109.0(13)	C11	-C12	-H12B	112.1(15)

C6	-C5	-H5B	111.3(13)	C11	-C12	-H12C	111.9(17)
H5A	-C5	-H5B	105.4(19)	H12B	-C12	-H12C	108(2)
C5	-C6	-H6A	108.6(13)	H12A	-C12	-H12C	110(2)
C5	-C6	-H6B	111.3(13)	P1	-C13	-H13B	104.7(14)
C7	-C6	-H6A	109.7(13)	P1	-C13	-H13A	103.5(15)
C7	-C6	-H6B	108.6(13)	H13A	-C13	-H13B	107.3(19)
H6A	-C6	-H6B	106.9(19)	C14	-C13	-H13A	110.4(13)
C6	-C7	-H7A	108.3(13)	C14	-C13	-H13B	112.0(13)
C6	-C7	-H7B	109.4(12)	C15	-C14	-H14B	109.7(15)
C8	-C7	-H7A	111.0(13)	H14A	-C14	-H14B	108(2)
C8	-C7	-H7B	110.4(11)	C15	-C14	-H14A	108.6(14)
H7A	-C7	-H7B	106.4(18)	C13	-C14	-H14A	111.1(13)
H8A	-C8	-H8B	109(2)	C13	-C14	-H14B	108.9(14)
H8A	-C8	-H8C	107(2)	C14	-C15	-H15A	110.9(14)
H8B	-C8	-H8C	105(2)	C14	-C15	-H15B	109.6(13)
C7	-C8	-H8B	111.0(17)	C16	-C15	-H15A	109.5(13)
C7	-C8	-H8C	113.1(15)	C16	-C15	-H15B	109.0(13)
C7	-C8	-H8A	112.1(15)	H15A	-C15	-H15B	104.9(18)
P1	-C9	-H9A	106.1(15)	C15	-C16	-H16C	111.9(15)
P1	-C9	-H9B	104.9(16)	H16A	-C16	-H16C	108(2)
C10	-C9	-H9A	110.5(16)	H16B	-C16	-H16C	107(2)
C10	-C9	-H9B	112.0(16)	H16A	-C16	-H16B	107(2)
H9A	-C9	-H9B	107(2)	C15	-C16	-H16A	111.2(14)
C11	-C10	-H10A	110.6(16)	C15	-C16	-H16B	111.4(14)
H10A	-C10	-H10B	103(2)				

2.2. Experimental details, bond distances and angles of 3

C₁₆H₃₀ N₄ Mo₆O₁₉ (**3**): a clear light yellow fragment-like specimen of Mo₆ O₁₉, 2(C₈ H₁₅ N₂), approximate dimensions 0.104 x 0.196 x 0.220 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 3967 frames were collected. The total exposure time was 5.51 h. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 48484 reflections to a maximum θ angle of 25.62° (0.82 Å resolution), of which 2838 were independent (average redundancy 17.084, completeness = 98.2%, R_{int} = 4.83%, R_{sig} = 1.79%) and 2586 (91.12%) were greater than 2 σ (F2). The final cell constants of a = 8.5458(16) Å, b = 17.085(3) Å, c = 11.075(2) Å, β = 108.937(8)°, volume = 1529.5(5) Å³, are based upon the refinement of the XYZ-centroids of 61 reflections above 20 σ (I) with 4.568° < 2 θ < 56.01°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.894. Bond distances and angles of **3** are shown in Table S4 and Table S5.

Mo1	-02	2.3206(5)	N2	-C3	1.373(4)
Mo1	-05	1.8507(18)	N2	-C8	1.470(4)
Mo1	-08	1.9738(17)	C2	-C3	1.343(4)
Mo1	-09	1.6815(18)	C4	-C5	1.509(3)
Mo1	-01_a	2.0149(18)	C5	-C6	1.532(4)
Mo1	-O6_a	1.8877(17)	C6	-C7	1.504(5)
Mo2	-01	1.8620(18)	C1	-H1	0.9500
Mo2	-02	2.3286(5)	C2	-H2	0.9500
Mo2	-03	1.9229(17)	C3	-H3	0.9500
Mo2	-05	2.0052(18)	C4	-H4A	0.9900
Mo2	-010	1.6784(18)	C4	-H4B	0.9900
Mo2	-O4_a	1.9333(18)	C5	-H5A	0.9900
Mo3	-02	2.3178(5)	C5	-H5B	0.9900
Mo3	-03	1.9318(18)	C6	-H6A	0.9900
Mo3	-04	1.9356(18)	C6	-H6B	0.9900
Mo3	-06	1.9661(18)	C7	-H7A	0.9800
Mo3	-07	1.6812(19)	C7	-H7B	0.9800
Mo3	-08	1.8835(17)	C7	-H7C	0.9800
N1	-C1	1.330(3)	C8	-H8A	0.9800
N1	-C2	1.373(3)	C8	-H8B	0.9800
N1	-C4	1.476(3)	C8	-H8C	0.9800
N2	-C1	1.333(3)			

Table S4. Bond distances (Å) in compound 3.

Table S5. Bond angles (°) in compound 3.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02	-Mo1	-05	78.25(6)	Mo2_a	-02	-Mo3	89.94(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	-Mo1	-08	75.66(5)	Mo3	-02	-Mo3_a	180.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	-Mo1	-09	175.56(6)	Mo1_a	-02	-Mo2_a	89.82(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O1_a	-Mo1	-02	75.48(5)	Mo1_a	-02	-Mo3_a	90.10(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02	-Mo1	-O6_a	77.38(5)	Mo2_a	-02	-Mo3_a	90.06(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O5	-Mo1	-08	88.26(7)	Mo2	-O3	-Mo3	117.03(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O5	-Mo1	-09	105.62(8)	Mo2_a	-04	-Mo3	116.16(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O1_a	-Mo1	-05	153.54(7)	Mo1	-05	-Mo2	116.64(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5	-Mo1	-O6_a	92.29(7)	Mo1_a	-06	-Mo3	116.48(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O8	-Mo1	-09	102.06(8)	Mo1	-08	-Mo3	116.64(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O1_a	-Mo1	-08	82.32(7)	C1	-N1	-C2	108.4(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O6_a	-Mo1	-08	152.33(7)	C1	-N1	-C4	127.2(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O1_a	-Mo1	-09	100.53(8)	C2	-N1	-C4	124.41(19)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O6_a	-Mo1	-09	104.41(8)	C1	-N2	-C3	108.2(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O1_a	-Mo1	-O6_a	85.06(7)	C1	-N2	-C8	125.1(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	-Mo2	-02	78.09(5)	C3	-N2	-C8	126.7(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O1	-Mo2	-O3	89.57(7)	N1	-C1	-N2	108.7(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O1	-Mo2	-05	153.31(7)	N1	-C2	-C3	107.3(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O1	-Mo2	-010	103.93(8)	N2	-C3	-C2	107.5(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01	-Mo2	-O4_a	90.31(7)	N1	-C4	-C5	112.8(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	-Mo2	-03	76.39(5)	C4	-C5	-C6	111.1(2)
O2 -Mo2 -O10 177.82(6) N1 -C1 -H1 126.00 O2 -Mo2 -O4_a 76.60(5) N2 -C1 -H1 126.00 O3 -Mo2 -O5 83.89(7) N1 -C2 -H2 126.00 O3 -Mo2 -O10 104.34(8) C3 -C2 -H2 126.00 O3 -Mo2 -O4_a 152.41(7) N2 -C3 -H3 126.00 O5 -Mo2 -O10 102.77(8) C2 -C3 -H3 126.00 O4_a -Mo2 -O5 83.92(7) N1 -C4 -H4A 109.00 O4_a -Mo2 -O5 83.92(7) N1 -C4 -H4A 109.00 O4_a -Mo2 -O10 102.45(8) N1 -C4 -H4A 109.00 O2 -Mo3 -O3 76.50(5) C5 -C4 -H4A 109.00 O2 -Mo3 -O6 <	O2	-Mo2	-05	75.22(5)	C5	-C6	-C7	113.0(3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	-Mo2	-010	177.82(6)	N1	-C1	-H1	126.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O2	-Mo2	-O4_a	76.60(5)	N2	-C1	-H1	126.00
O3 -Mo2 -O10 104.34(8) C3 -C2 -H2 126.00 O3 -Mo2 -O4_a 152.41(7) N2 -C3 -H3 126.00 O5 -Mo2 -O10 102.77(8) C2 -C3 -H3 126.00 O4_a -Mo2 -O5 83.92(7) N1 -C4 -H4A 109.00 O4_a -Mo2 -O10 102.45(8) N1 -C4 -H4B 109.00 O4_a -Mo2 -O10 102.45(8) N1 -C4 -H4B 109.00 O2 -Mo3 -O3 76.50(5) C5 -C4 -H4A 109.00 O2 -Mo3 -O4 76.83(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O6 76.01(5) H4A -C4 -H4B 108.00	O3	-Mo2	-05	83.89(7)	N1	-C2	-H2	126.00
O3 -Mo2 -O4_a 152.41(7) N2 -C3 -H3 126.00 O5 -Mo2 -O10 102.77(8) C2 -C3 -H3 126.00 O4_a -Mo2 -O5 83.92(7) N1 -C4 -H4A 109.00 O4_a -Mo2 -O10 102.45(8) N1 -C4 -H4B 109.00 O2 -Mo3 -O3 76.50(5) C5 -C4 -H4A 109.00 O2 -Mo3 -O4 76.83(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O6 76.01(5) H4A -C4 -H4B 109.00	O3	-Mo2	-010	104.34(8)	C3	-C2	-H2	126.00
O5 -Mo2 -O10 102.77(8) C2 -C3 -H3 126.00 O4_a -Mo2 -O5 83.92(7) N1 -C4 -H4A 109.00 O4_a -Mo2 -O10 102.45(8) N1 -C4 -H4B 109.00 O2 -Mo3 -O3 76.50(5) C5 -C4 -H4A 109.00 O2 -Mo3 -O4 76.83(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O6 76.01(5) H4A -C4 -H4B 109.00	O3	-Mo2	-O4_a	152.41(7)	N2	-C3	-H3	126.00
O4_a -Mo2 -O5 83.92(7) N1 -C4 -H4A 109.00 O4_a -Mo2 -O10 102.45(8) N1 -C4 -H4B 109.00 O2 -Mo3 -O3 76.50(5) C5 -C4 -H4A 109.00 O2 -Mo3 -O3 76.50(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O4 76.83(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O6 76.01(5) H4A -C4 -H4B 108.00	O5	-Mo2	-010	102.77(8)	C2	-C3	-H3	126.00
O4_a -Mo2 -O10 102.45(8) N1 -C4 -H4B 109.00 O2 -Mo3 -O3 76.50(5) C5 -C4 -H4A 109.00 O2 -Mo3 -O4 76.83(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O4 76.83(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O6 76.01(5) H4A -C4 -H4B 108.00	O4_a	-Mo2	-05	83.92(7)	N1	-C4	-H4A	109.00
O2 -Mo3 -O3 76.50(5) C5 -C4 -H4A 109.00 O2 -Mo3 -O4 76.83(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O6 76.01(5) H4A -C4 -H4B 108.00	O4_a	-Mo2	-010	102.45(8)	N1	-C4	-H4B	109.00
O2 -Mo3 -O4 76.83(5) C5 -C4 -H4B 109.00 O2 -Mo3 -O6 76.01(5) H4A -C4 -H4B 108.00	O2	-Mo3	-O3	76.50(5)	C5	-C4	-H4A	109.00
O2 -Mo3 -O6 76.01(5) H4A -C4 -H4B 108.00	O2	-Mo3	-04	76.83(5)	C5	-C4	-H4B	109.00
	O2	-Mo3	-06	76.01(5)	H4A	-C4	-H4B	108.00

O2	-Mo3	-07	177.35(7)	C4	-C5	-H5A	109.00
O2	-Mo3	-08	77.38(5)	C4	-C5	-H5B	109.00
O3	-Mo3	-04	153.12(7)	C6	-C5	-H5A	109.00
O3	-Mo3	-06	85.08(7)	C6	-C5	-H5B	109.00
O3	-Mo3	-07	102.21(8)	H5A	-C5	-H5B	108.00
O3	-Mo3	-08	88.76(7)	C5	-C6	-H6A	109.00
O4	-Mo3	-06	85.40(7)	C5	-C6	-H6B	109.00
O4	-Mo3	-07	104.31(8)	C7	-C6	-H6A	109.00
O4	-Mo3	-08	88.59(7)	C7	-C6	-H6B	109.00
O6	-Mo3	-07	101.63(8)	H6A	-C6	-H6B	108.00
O6	-Mo3	-08	153.39(7)	C6	-C7	-H7A	109.00
07	-Mo3	-08	104.97(8)	C6	-C7	-H7B	109.00
Mo1_a	-01	-Mo2	116.21(8)	C6	-C7	-H7C	109.00
Mo1	-02	-Mo2	89.82(1)	H7A	-C7	-H7B	109.00
Mo1	-02	-Mo3	90.10(1)	H7A	-C7	-H7C	110.00
Mo1	-02	-Mo1_a	180.00	H7B	-C7	-H7C	109.00
Mo1	-02	-Mo2_a	90.18(1)	N2	-C8	-H8A	109.00
Mo1	-02	-Mo3_a	89.90(1)	N2	-C8	-H8B	110.00
Mo2	-02	-Mo3	90.06(1)	N2	-C8	-H8C	109.00
Mo1_a	-02	-Mo2	90.18(1)	H8A	-C8	-H8B	109.00
Mo2	-02	-Mo2_a	180.00	H8A	-C8	-H8C	109.00
Mo2	-02	-Mo3_a	89.94(1)	H8B	-C8	-H8C	109.00
Mo1_a	-02	-Mo3	89.90(1)				

2.3. Experimental details, bond distances and angles of 4

 $C_{18}H_{34}N_4$ Mo₆O₁₉ (4): a clear light yellow fragment-like specimen of 2(C₉ H₁₇ N₂), Mo₆ O₁₉, approximate dimensions 0.240 mm x 0.410 mm x 0.460 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 3797 frames were collected. The total exposure time was 5.28 h. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 40353 reflections to a maximum θ angle of 25.47° (0.83 Å resolution), of which 2989 were independent (average redundancy 13.501, completeness = 99.9%, R_{int} = 8.15%, R_{sig} = 2.24%) and 2902 (97.09%) were greater than $2\sigma(F2)$. The final cell constants of a = 11.0074(2) Å, b = 10.7827(2) Å, c = 13.5900(3) Å, β = 91.0450(10)°, volume = 1612.72(5) Å³, are based upon the refinement of the XYZ-centroids of 179 reflections above 20 $\sigma(I)$ with 3.027° < 2 θ < 65.42°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.788. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.4091 and 0.5983. Bond distances and angles of **4** are shown in Table S6 and Table S7.

N	/lo1	-05	1.967(2)	N2		-C8	1.434(6)
Ν	/lo1	-09	1.937(3)	C1		-C9	1.451(6)
Ν	/lo1	-010	1.681(3)	C2		-C3	1.305(6)
Ν	/lo1	-01	1.903(2)	C4		-C5	1.527(5)
Ν	/101	-02	2.3162(3)	C5		-C6	1.519(6)
N	/01	-04	1 891(2)	C6		-C7	1.524(6)
N	102	-01	1.001(2) 1.944(3)	C2		-H2	0.9500
N	102	-02	23157(3)	C3		-H3	0.0000
N N	102	-02	1 202(2)	C4			0.9500
N N	102	-00	1.090(2)	C4			0.9900
IN N	/102	-09_a	1.900(3)	04			0.9900
IN N	/102	-08	1.078(3)	C5			0.9900
N	/102	-07_a	1.969(2)	05		-H5B	0.9900
IN IN	/103	-02	2.3243(3)	60		-H6A	0.9900
N	/103	-03	1.686(2)	C6		-H6B	0.9900
N	/103	-04	1.971(2)	C7		-H7A	0.9800
N	/lo3	-06	1.971(2)	C7		-H7B	0.9800
Ν	/lo3	-O5_a	1.888(2)	C7		-H7C	0.9800
Ν	/lo3	-07	1.874(2)	C8		-H8C	0.9800
	N1	-C2	1.425(6)	C8		-H8A	0.9800
	N1	-C1	1.327(5)	C8		-H8B	0.9800
	N1	-C4	1.476(6)	C9		-H9A	0.9800
	N2	-C3	1.421(6)	C9		-H9B	0.9800
	N2	-C1	1.308(6)	C9		-H9C	0.9800
Table S7.	Bond angle	s (°)in comp	ound 4.				
05	-Mo1	-09	84 56(11)	Mo2 a	-02	-Mo3	89.98(1)
05	-Mo1	-010	101 76(13)	Mo2_d	-02	-Mo3 a	180.00
00	-Mo1	-010	102.61(13)	Mo1 a	_02	-Mo3	80 04(1)
03	-Mo1	-010	77.50(7)	Mo1_a	-02	-1005 Mo3 a	09.94(1)
02	-Mo1	-04	76.03(7)	Mo1_a	-02	-1005_a	90.00(1) 90.94(1)
02	-IVIO I Mo1	-03	70.03(7)	Mo1	-02	-ivioz_a	116 40(12)
01	-IVIO I Mo1	-02	77.13(7)	IVIO I Mo1	-04	-10103	110.40(12)
01	-IVIO I	-04	09.00(10)		-05	-10105_a	110.09(12)
01		-05	80.48(10)		-06	-10103	110.01(11)
01	-IVIO1	-09	153.05(10)	Moz_a	-07	-1003	117.15(12)
01	-IVIO1	-010	104.09(13)	MOT	-09	-Mo2_a	117.18(13)
02	-M01	-010	177.46(11)	C1	-N1	-C4	127.4(4)
04	-Mo1	-05	153.59(10)	C1	-N1	-C2	107.7(4)
02	-Mo1	-09	76.05(7)	C2	-N1	-C4	124.5(3)
O4	-Mo1	-010	104.59(13)	C1	-N2	-C3	107.9(3)
O4	-Mo1	-09	87.84(11)	C1	-N2	-C8	131.4(4)
01	-Mo2	-06	87.73(10)	C3	-N2	-C8	120.5(4)
01	-Mo2	-02	76.39(7)	N2	-C1	-C9	124.7(4)
07_a	-Mo2	-O9_a	85.71(11)	N1	-C1	-C9	125.5(4)
02	-Mo2	-07_a	75.67(7)	N1	-C1	-N2	109.7(4)
O2	-Mo2	-O9_a	76.62(8)	N1	-C2	-C3	106.9(4)
01	-Mo2	-08	104.08(12)	N2	-C3	-C2	107.8(4)
O1	-Mo2	-07 a	84.68(10)	N1	-C4	-C5	109.3(3)
01	-Mo2	-09 ⁻ a	152.83(1Ó)	C4	-C5	-C6	111.5(3)
02	-Mo2	-06	77.70(7)	C5	-C6	-C7	111.5(3)
02	-Mo2	-08	178.73(10)	C3	-C2	-H2	126.00
06	-Mo2	-07 a	153 33(10)	N1	-C2	-H2	127 00
06	-Mo2	-09 a	89.57(11)	N2	-C3	-H3	126.00
06	-Mo2	-08	103 48(12)	C2	-C3	-H3	126.00
08	-Mo2	-09 a	102 84(12)	N1	-C4	-H4A	110 00
07 3	_Mo2	_O2_a	103 17(12)	NI1	-04		110.00
01_a	-10102	-00	75 02(6)	НИЛ	_CA		102.00
02		-04	177 70/9)	C5	-04	-i 14D	110.00
02		-03	111.19(0)	C5	-04	-174D	110.00
	-11/103	-07	90.30(11)	05	-04	-H4A	100.00
03	-1/103	-06	102.12(10)		-05	-HoA	109.00
03	-1/103	-07	104.46(11)	C4	-05	-H5B	109.00

Table S6. Bond distances (Å) in compound 4.

O3	-Mo3	-O5_a	104.08(11)	C4	-C5	-H5A	109.00
O2	-Mo3	-06	76.15(6)	C6	-C5	-H5B	109.00
O2	-Mo3	-07	77.19(7)	H5A	-C5	-H5B	108.00
O2	-Mo3	-O5_a	77.29(7)	C5	-C6	-H6A	109.00
O3	-Mo3	-04	102.59(11)	H6A	-C6	-H6B	108.00
O5_a	-Mo3	-06	86.79(10)	C5	-C6	-H6B	109.00
O4	-Mo3	-07	87.25(10)	C7	-C6	-H6A	109.00
O4	-Mo3	-O5_a	152.96(9)	C7	-C6	-H6B	109.00
O4	-Mo3	-06	83.35(10)	C6	-C7	-H7A	109.00
O6	-Mo3	-07	153.15(9)	C6	-C7	-H7B	110.00
Mo1	-01	-Mo2	116.44(11)	C6	-C7	-H7C	110.00
Mo1	-02	-Mo3	90.06(1)	H7B	-C7	-H7C	109.00
Mo1	-02	-Mo2	89.84(1)	H7A	-C7	-H7B	109.00
Mo2_a	-02	-Mo3_a	90.03(1)	H7A	-C7	-H7C	109.00
Mo2	-02	-Mo2_a	180.00	N2	-C8	-H8B	109.00
Mo2	-02	-Mo3_a	89.98(1)	H8A	-C8	-H8C	109.00
Mo1	-02	-Mo1_a	180.00	N2	-C8	-H8C	110.00
Mo1	-02	-Mo2_a	90.16(1)	H8A	-C8	-H8B	109.00
Mo1	-02	-Mo3_a	89.94(1)	N2	-C8	-H8A	109.00
Mo2	-02	-Mo3	90.03(1)	H8B	-C8	-H8C	110.00
Mo1_a	-02	-Mo2	90.16(1)	C1	-C9	-H9C	109.00
H9A	-C9	-H9C	109.00	C1	-C9	-H9A	109.00
H9B	-C9	-H9C	109.00	C1	-C9	-H9B	110.00
H9A	-C9	-H9B	110.00				

2.4. Hirshfeld Surface Analysis

all contacts:

all contacts:

3. Characterization data of sulfoxides

- Dimethyl sulfoxide: colorless liquid. IR (cm⁻¹): 1015. ¹H NMR (CDCl₃, 400 MHz, r.t. ppm): δ = 2.47 (s, 6H). ¹³C NMR (CDCl₃, 100Hz, r.t., ppm): δ = 41.30.
- 2) Dibutyl sulfoxide: white solid. M. p.: 30-32 °C. IR (cm⁻¹): 1023. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 0.98-1.01 (t, 6H), 1.48-1.52 (m, 4H), 1.83-1.87 (m, 4H), 2.94-2.99 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 13.53, 21.78, 23.95, 52.50.
- 3) Methyl phenyl sulfoxide: pale yellow oil. IR (cm⁻¹): 1032. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 2.60 (s, 3H), 7.39-7.40 (d, 3H), 7.53-7.55 (t, 2H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 43.75, 123.29, 129.17, 130.81, 145.62.
- 4) Ethyl phenyl sulfoxide: yellow oil. IR (cm⁻¹): 1018. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 1.03 1.07 (t, 3H), 2.58-2.67 (m, 1H), 2.73-2.82 (m, 1H), 7.33 -7.40 (m, 3H), 7.47-7.49 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 6.06, 50.49, 124.38, 129.33, 131.08, 143.78.

- 5) Phenyl isopropyl sulfoxide: yellow oil. IR (cm⁻¹): 1020. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 1.04-1.06 (d, 3H), 1.14-1.15 (d, 3H), 2.73 2.77 (m, 3H), 7.41-7.44 (m, 3H), 7.50-7.52 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 13.82, 15.84, 54.45, 124.91, 128.83, 130.93, 141.68.
- 6) Phenyl allyl sulfoxide: yellow oil. IR (cm⁻¹): 1037. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 3.39-3.52 (m, 2H), 5.08-5.13 (d, 1H), 5.22-5.25 (d, 1H), 5.51-5.59 (m, 1H), 7.41 7.45 (m, 3H), 7.51-7.53 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 59.76, 122.85, 123.27, 124.19, 128.01, 130.06, 141.85
- 7) 2-(Phenylsulfinyl)ethanol: pale yellow oil. IR (cm⁻¹): 3343, 1018. ¹H NMR (d₆-DMSO, 400 MHz, r.t., ppm): δ = 2.83-2.98 (m, 1H), 2.99-3.04 (m, 1H), 3.64-3.70 (m, 1H), 3.80-3.88 (m, 1H), 5.08 5.12 (t, 1H), 7.50-7.58 (m, 3H), 7.588-7.67 (m, 2H). ¹³C NMR (d₆-DMSO, 100 MHz, r.t., ppm): δ = 54.32, 59.92, 123.78, 129.20, 130.65, 144.66
- 8) Methoxymethyl phenyl sulfoxide: pale yellow oil. IR (cm⁻¹):1015. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 3.68 (s, 3H), 4.53 (s, 2H), 7.58-7.62 (m, 2H), 7.64-7.70 (m, 1H), 7.94 7.96 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 61.19, 87.78, 128.74, 129.23, 134.07, 137.39
- 9) Methyl 2-(pheylsulfinyl) acetate: pale yellow oil. IR (cm⁻¹): 1043. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 3.54 (s, 3H), 3.58-3.62 (d, 1H), 3.69-3.72 (d, 1H), 7.39-7.40 (d, 3H), 7.54-7.56 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 52.63, 61.34, 124.03, 129.37, 131.73, 142.92, 165.17.
- 10) Diphenyl sulfoxide: colorless crystals. M.p.: 70-72 °C. IR (cm⁻¹): 1034. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 7.34-7.41 (m, 6H), 7.55-7.59 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 123.80, 128.31, 130.02, 144.69.
- 11) Benzyl phenyl sulfoxide: white solid. M.p.: 234-237 °C. IR (cm⁻¹): 1027. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 4.03-4.06 (d, 1H), 4.13-4.16 (d, 1H), 7.02 7.03 (d, 2H), 7.27-7.41 (m, 3H), 7.41-7.53 (m, 5H). ¹³C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 63.57, 124.47, 128.26, 128.46, 128.86, 129.13, 130.37, 131.19, 142.72.
- 12) Dibenzyl sulfoxide: white solid. M.p.: 136-138 °C. IR (cm⁻¹): 1028. ¹H NMR (CDCl₃, 400 MHz, r.t., ppm): δ = 3.94 4.01 (q, 4H), 7.31-7.38 (m, 4H), 7.40-7.45

(m, 6H). 13 C NMR (CDCl₃, 100 MHz, r.t., ppm): δ = 57.18, 128.42, 128.99, 130.16, 130.86.